A Supramolecular View on the Cooperative Role of Brønsted and Lewis Acid Sites in Zeolites for Methanol Conversion
A systematic molecular level and spectroscopic investigation is presented to show the cooperative role of Brønsted acid and Lewis acid sites in zeolites for the conversion of methanol. Extra-framework alkaline-earth metal containing species and aluminum species decrease the number of Brønsted acid s...
Uloženo v:
| Vydáno v: | Journal of the American Chemical Society Ročník 141; číslo 37; s. 14823 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
18.09.2019
|
| ISSN: | 1520-5126, 1520-5126 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A systematic molecular level and spectroscopic investigation is presented to show the cooperative role of Brønsted acid and Lewis acid sites in zeolites for the conversion of methanol. Extra-framework alkaline-earth metal containing species and aluminum species decrease the number of Brønsted acid sites, as protonated metal clusters are formed. A combined experimental and theoretical effort shows that postsynthetically modified ZSM-5 zeolites, by incorporation of extra-framework alkaline-earth metals or by demetalation with dealuminating agents, contain both mononuclear [MOH]
and double protonated binuclear metal clusters [M(μ-OH)
M]
(M = Mg, Ca, Sr, Ba, and HOAl). The metal in the extra-framework clusters has a Lewis acid character, which is confirmed experimentally and theoretically by IR spectra of adsorbed pyridine. The strength of the Lewis acid sites (Mg > Ca > Sr > Ba) was characterized by a blue shift of characteristic IR peaks, thus offering a tool to sample Lewis acidity experimentally. The incorporation of extra-framework Lewis acid sites has a substantial influence on the reactivity of propene and benzene methylations. Alkaline-earth Lewis acid sites yield increased benzene methylation barriers and destabilization of typical aromatic intermediates, whereas propene methylation routes are less affected. The effect on the catalytic function is especially induced by the double protonated binuclear species. Overall, the extra-framework metal clusters have a dual effect on the catalytic function. By reducing the number of Brønsted acid sites and suppressing typical catalytic reactions in which aromatics are involved, an optimal propene selectivity and increased lifetime for methanol conversion over zeolites is obtained. The combined experimental and theoretical approach gives a unique insight into the nature of the supramolecular zeolite catalyst for methanol conversion which can be meticulously tuned by subtle interplay of Brønsted and Lewis acid sites. |
|---|---|
| AbstractList | A systematic molecular level and spectroscopic investigation is presented to show the cooperative role of Brønsted acid and Lewis acid sites in zeolites for the conversion of methanol. Extra-framework alkaline-earth metal containing species and aluminum species decrease the number of Brønsted acid sites, as protonated metal clusters are formed. A combined experimental and theoretical effort shows that postsynthetically modified ZSM-5 zeolites, by incorporation of extra-framework alkaline-earth metals or by demetalation with dealuminating agents, contain both mononuclear [MOH]+ and double protonated binuclear metal clusters [M(μ-OH)2M]2+ (M = Mg, Ca, Sr, Ba, and HOAl). The metal in the extra-framework clusters has a Lewis acid character, which is confirmed experimentally and theoretically by IR spectra of adsorbed pyridine. The strength of the Lewis acid sites (Mg > Ca > Sr > Ba) was characterized by a blue shift of characteristic IR peaks, thus offering a tool to sample Lewis acidity experimentally. The incorporation of extra-framework Lewis acid sites has a substantial influence on the reactivity of propene and benzene methylations. Alkaline-earth Lewis acid sites yield increased benzene methylation barriers and destabilization of typical aromatic intermediates, whereas propene methylation routes are less affected. The effect on the catalytic function is especially induced by the double protonated binuclear species. Overall, the extra-framework metal clusters have a dual effect on the catalytic function. By reducing the number of Brønsted acid sites and suppressing typical catalytic reactions in which aromatics are involved, an optimal propene selectivity and increased lifetime for methanol conversion over zeolites is obtained. The combined experimental and theoretical approach gives a unique insight into the nature of the supramolecular zeolite catalyst for methanol conversion which can be meticulously tuned by subtle interplay of Brønsted and Lewis acid sites.A systematic molecular level and spectroscopic investigation is presented to show the cooperative role of Brønsted acid and Lewis acid sites in zeolites for the conversion of methanol. Extra-framework alkaline-earth metal containing species and aluminum species decrease the number of Brønsted acid sites, as protonated metal clusters are formed. A combined experimental and theoretical effort shows that postsynthetically modified ZSM-5 zeolites, by incorporation of extra-framework alkaline-earth metals or by demetalation with dealuminating agents, contain both mononuclear [MOH]+ and double protonated binuclear metal clusters [M(μ-OH)2M]2+ (M = Mg, Ca, Sr, Ba, and HOAl). The metal in the extra-framework clusters has a Lewis acid character, which is confirmed experimentally and theoretically by IR spectra of adsorbed pyridine. The strength of the Lewis acid sites (Mg > Ca > Sr > Ba) was characterized by a blue shift of characteristic IR peaks, thus offering a tool to sample Lewis acidity experimentally. The incorporation of extra-framework Lewis acid sites has a substantial influence on the reactivity of propene and benzene methylations. Alkaline-earth Lewis acid sites yield increased benzene methylation barriers and destabilization of typical aromatic intermediates, whereas propene methylation routes are less affected. The effect on the catalytic function is especially induced by the double protonated binuclear species. Overall, the extra-framework metal clusters have a dual effect on the catalytic function. By reducing the number of Brønsted acid sites and suppressing typical catalytic reactions in which aromatics are involved, an optimal propene selectivity and increased lifetime for methanol conversion over zeolites is obtained. The combined experimental and theoretical approach gives a unique insight into the nature of the supramolecular zeolite catalyst for methanol conversion which can be meticulously tuned by subtle interplay of Brønsted and Lewis acid sites. A systematic molecular level and spectroscopic investigation is presented to show the cooperative role of Brønsted acid and Lewis acid sites in zeolites for the conversion of methanol. Extra-framework alkaline-earth metal containing species and aluminum species decrease the number of Brønsted acid sites, as protonated metal clusters are formed. A combined experimental and theoretical effort shows that postsynthetically modified ZSM-5 zeolites, by incorporation of extra-framework alkaline-earth metals or by demetalation with dealuminating agents, contain both mononuclear [MOH] and double protonated binuclear metal clusters [M(μ-OH) M] (M = Mg, Ca, Sr, Ba, and HOAl). The metal in the extra-framework clusters has a Lewis acid character, which is confirmed experimentally and theoretically by IR spectra of adsorbed pyridine. The strength of the Lewis acid sites (Mg > Ca > Sr > Ba) was characterized by a blue shift of characteristic IR peaks, thus offering a tool to sample Lewis acidity experimentally. The incorporation of extra-framework Lewis acid sites has a substantial influence on the reactivity of propene and benzene methylations. Alkaline-earth Lewis acid sites yield increased benzene methylation barriers and destabilization of typical aromatic intermediates, whereas propene methylation routes are less affected. The effect on the catalytic function is especially induced by the double protonated binuclear species. Overall, the extra-framework metal clusters have a dual effect on the catalytic function. By reducing the number of Brønsted acid sites and suppressing typical catalytic reactions in which aromatics are involved, an optimal propene selectivity and increased lifetime for methanol conversion over zeolites is obtained. The combined experimental and theoretical approach gives a unique insight into the nature of the supramolecular zeolite catalyst for methanol conversion which can be meticulously tuned by subtle interplay of Brønsted and Lewis acid sites. |
| Author | Chowdhury, Abhishek Dutta Yarulina, Irina Dokania, Abhay Bailleul, Simon Gascon, Jorge Abou-Hamad, Edy Hajek, Julianna Pieters, Giovanni Waroquier, Michel De Wispelaere, Kristof Hoffman, Alexander E J Van Speybroeck, Veronique |
| Author_xml | – sequence: 1 givenname: Simon surname: Bailleul fullname: Bailleul, Simon organization: Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium – sequence: 2 givenname: Irina surname: Yarulina fullname: Yarulina, Irina organization: King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia – sequence: 3 givenname: Alexander E J orcidid: 0000-0002-1529-4705 surname: Hoffman fullname: Hoffman, Alexander E J organization: Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium – sequence: 4 givenname: Abhay surname: Dokania fullname: Dokania, Abhay organization: King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia – sequence: 5 givenname: Edy surname: Abou-Hamad fullname: Abou-Hamad, Edy organization: King Abdullah University of Science and Technology (KAUST) , Core Laboratories , Thuwal , Saudi Arabia – sequence: 6 givenname: Abhishek Dutta orcidid: 0000-0002-4121-7375 surname: Chowdhury fullname: Chowdhury, Abhishek Dutta organization: King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia – sequence: 7 givenname: Giovanni surname: Pieters fullname: Pieters, Giovanni organization: Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium – sequence: 8 givenname: Julianna surname: Hajek fullname: Hajek, Julianna organization: Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium – sequence: 9 givenname: Kristof surname: De Wispelaere fullname: De Wispelaere, Kristof organization: Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium – sequence: 10 givenname: Michel surname: Waroquier fullname: Waroquier, Michel organization: Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium – sequence: 11 givenname: Jorge orcidid: 0000-0001-7558-7123 surname: Gascon fullname: Gascon, Jorge organization: King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia – sequence: 12 givenname: Veronique orcidid: 0000-0003-2206-178X surname: Van Speybroeck fullname: Van Speybroeck, Veronique organization: Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31464134$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkDtPwzAUhS1URB-wMSOPLCn2tdMkY6l4SUVIFBhYIse5UV0ldrGTVvwzdv4YEQ-J4eic4dM3nDEZWGeRkFPOppwBv9goHaZZwRKZygMy4jGwKOYwG_zbQzIOYcMYk5DyIzIUXM4kF3JEwpyuuq1XjatRd7Xy9MXgnjpL2zXShXNb9Ko1O6SPPUFdRS_954cNLZZU2ZIucW8CnWtT0pVpMVBj6Su6-ntXztN7bNfKurp32R36YJw9JoeVqgOe_PaEPF9fPS1uo-XDzd1ivoxUHIs2qgTTPGUFZkmS9CmhKgRojRjLpBSSQylUmmVaA1dcZgxmTOs0EbKQmYwZTMj5j3fr3VuHoc0bEzTWtbLoupADpBBzkTDo0bNftCsaLPOtN43y7_nfUfAF2qtsUA |
| CitedBy_id | crossref_primary_10_1002_chem_202300330 crossref_primary_10_1016_j_seppur_2025_134470 crossref_primary_10_1021_acs_inorgchem_5c02959 crossref_primary_10_1039_D1QM00299F crossref_primary_10_1007_s13369_023_08417_0 crossref_primary_10_1038_s41467_021_24403_2 crossref_primary_10_1002_anie_202414724 crossref_primary_10_1007_s11144_024_02612_2 crossref_primary_10_1021_jacs_5c01756 crossref_primary_10_1039_D0CY02497J crossref_primary_10_1002_ange_202112948 crossref_primary_10_1142_S1793604724510330 crossref_primary_10_1039_D4CY00110A crossref_primary_10_1039_D5SE00231A crossref_primary_10_1007_s11696_021_01982_4 crossref_primary_10_1016_j_fmre_2021_08_002 crossref_primary_10_1016_j_micromeso_2025_113509 crossref_primary_10_1016_j_cattod_2025_115339 crossref_primary_10_1002_aic_18710 crossref_primary_10_1002_cctc_202300402 crossref_primary_10_1016_j_jaap_2025_107009 crossref_primary_10_1016_j_micromeso_2022_112259 crossref_primary_10_1039_D1CS01036K crossref_primary_10_1016_j_cej_2024_152906 crossref_primary_10_1002_anie_202009139 crossref_primary_10_1002_chem_202004865 crossref_primary_10_1016_j_apcatb_2021_120801 crossref_primary_10_1016_j_susc_2022_122030 crossref_primary_10_1021_acscatal_4c04987 crossref_primary_10_1002_cctc_201901937 crossref_primary_10_1016_j_jcat_2023_115169 crossref_primary_10_1021_acscatal_5c03607 crossref_primary_10_1016_j_apcata_2024_119854 crossref_primary_10_1016_j_checat_2024_101168 crossref_primary_10_1021_acssuschemeng_5c05812 crossref_primary_10_1038_s41467_021_26090_5 crossref_primary_10_1016_j_checat_2022_07_026 crossref_primary_10_1016_j_jcat_2019_11_015 crossref_primary_10_1039_D2CC02216H crossref_primary_10_1021_jacs_4c09274 crossref_primary_10_1016_j_fuproc_2023_107693 crossref_primary_10_1016_j_mtchem_2023_101745 crossref_primary_10_1002_aic_17134 crossref_primary_10_1016_j_cej_2025_161126 crossref_primary_10_1016_j_renene_2020_11_098 crossref_primary_10_1002_cctc_202500382 crossref_primary_10_1039_D3RA00037K crossref_primary_10_14710_ijred_2021_33281 crossref_primary_10_1016_j_cej_2023_142252 crossref_primary_10_1016_j_energy_2025_134635 crossref_primary_10_1016_j_cattod_2022_05_049 crossref_primary_10_1016_j_cej_2023_143346 crossref_primary_10_1016_j_cej_2025_167957 crossref_primary_10_1002_cctc_202400434 crossref_primary_10_1021_jacs_1c05014 crossref_primary_10_1002_cssc_202300608 crossref_primary_10_1016_j_cattod_2022_07_017 crossref_primary_10_1016_j_mcat_2022_112755 crossref_primary_10_1016_j_jcat_2023_115211 crossref_primary_10_1016_j_fuel_2024_131905 crossref_primary_10_1002_anie_202112948 crossref_primary_10_1039_D5CS00341E crossref_primary_10_1039_D5RA01826A crossref_primary_10_1016_j_jcat_2020_04_015 crossref_primary_10_1002_ange_202414724 crossref_primary_10_1016_j_cej_2022_136898 crossref_primary_10_1016_j_fuel_2024_134094 crossref_primary_10_1002_cctc_202500151 crossref_primary_10_1016_j_jgsce_2023_205004 crossref_primary_10_1007_s12633_023_02669_z crossref_primary_10_1016_S1872_2067_22_64209_8 crossref_primary_10_1016_j_cej_2023_148399 crossref_primary_10_1038_s41467_022_30538_7 crossref_primary_10_1016_j_apsusc_2023_158765 crossref_primary_10_1016_j_mtchem_2022_101061 crossref_primary_10_1016_j_jece_2023_111790 crossref_primary_10_1016_j_fuel_2021_122435 crossref_primary_10_1038_s41467_021_21062_1 crossref_primary_10_1021_jacs_1c08036 crossref_primary_10_1039_D3CY00642E crossref_primary_10_1016_j_apcatb_2024_123842 crossref_primary_10_1021_acs_jpcc_4c05835 crossref_primary_10_1016_j_jiec_2021_01_010 crossref_primary_10_1016_j_mcat_2023_113181 crossref_primary_10_1002_ange_202009139 crossref_primary_10_1016_j_fuel_2025_136068 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1021/jacs.9b07484 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-5126 |
| ExternalDocumentID | 31464134 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI AAHBH ABJNI ABMVS ABPPZ ABQRX ABUCX ACBEA ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ DU5 EBS ED~ EJD F5P GGK GNL IH2 IH9 JG~ LG6 NPM P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YIN YQT YZZ ZCA ~02 7X8 AAYWT ABBLG ABLBI AETEA AHDLI |
| ID | FETCH-LOGICAL-a553t-f30c180be9777977d2fb32ccee547d3412d3a899cc21a1490260cc8734b494502 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 111 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487180200048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-5126 |
| IngestDate | Fri Sep 05 11:07:33 EDT 2025 Wed Feb 19 02:30:34 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 37 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a553t-f30c180be9777977d2fb32ccee547d3412d3a899cc21a1490260cc8734b494502 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-4121-7375 0000-0001-7558-7123 0000-0003-2206-178X 0000-0002-1529-4705 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6753656 |
| PMID | 31464134 |
| PQID | 2282513702 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2282513702 pubmed_primary_31464134 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-18 |
| PublicationDateYYYYMMDD | 2019-09-18 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-18 day: 18 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of the American Chemical Society |
| PublicationTitleAlternate | J Am Chem Soc |
| PublicationYear | 2019 |
| SSID | ssj0004281 |
| Score | 2.6059482 |
| Snippet | A systematic molecular level and spectroscopic investigation is presented to show the cooperative role of Brønsted acid and Lewis acid sites in zeolites for... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 14823 |
| Title | A Supramolecular View on the Cooperative Role of Brønsted and Lewis Acid Sites in Zeolites for Methanol Conversion |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31464134 https://www.proquest.com/docview/2282513702 |
| Volume | 141 |
| WOSCitedRecordID | wos000487180200048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI6AIcGF9_shI3EtpEm7tic0JhAHmBAvTVwmN02kIUjHOsZf484fw2k7wQUJiUOrHto0cl1_nx3HZuxQqURhEklycpAcFJOhl2Doe7rJjZboc2PKjcKXUacTd7vJdR1wK-q0yolNLA11lisXIz8W5SZLGXFxMnj1XNcot7pat9CYZg1JVMZpddT9US1cxFW9VHKRCNiadeI7wdrxE6riKEm5K6X5O7ksQeZ88b_TW2ILNb2EVqUPy2xK2xU21550dVtlRQtu3wZDfJm0xYUHGhhyC8QEoZ3nA13VAocbugNyA6fDzw_rgqKANoNL_d4voKX6GdzSqwvoW3jULomOrokAw5V2wfj8mcay4yoYt8buz8_u2hde3XjBwzCUI89IrvyYp5rIYURHJkwqhSI8DYMoI9wTmURy1JQSPpKL5eqSKRVHMkiDJAi5WGczNrd6kwGmmmvjG84VBiHqOMOm0IjYDJXPY7PFDiby7JEk3GoFWp2_Fb1viW6xjeqj9AZVBY6eJPtO6Bts_-HpHTZPJKfMC_PjXdYw9FvrPTarxqN-MdwvNYbOneurL-o5zcc |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Supramolecular+View+on+the+Cooperative+Role+of+Br%C3%B8nsted+and+Lewis+Acid+Sites+in+Zeolites+for+Methanol+Conversion&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Bailleul%2C+Simon&rft.au=Yarulina%2C+Irina&rft.au=Hoffman%2C+Alexander+E+J&rft.au=Dokania%2C+Abhay&rft.date=2019-09-18&rft.eissn=1520-5126&rft.volume=141&rft.issue=37&rft.spage=14823&rft_id=info:doi/10.1021%2Fjacs.9b07484&rft_id=info%3Apmid%2F31464134&rft_id=info%3Apmid%2F31464134&rft.externalDocID=31464134 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5126&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5126&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5126&client=summon |