Structure of Pareto Solutions of Generalized Polyhedral-Valued Vector Optimization Problems in Banach Spaces

In general Banach spaces, we consider a vector optimization problem (SVOP) in which the objective is a set-valued mapping whose graph is the union of finitely many polyhedra or the union of finitely many generalized polyhedra. Dropping the compactness assumption, we establish some results on structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis Jg. 2013; H. 2013; S. 904 - 913-795
Hauptverfasser: Qinghai, He, Kong, Weili
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cairo, Egypt Hindawi Limiteds 01.01.2013
Hindawi Puplishing Corporation
Hindawi Publishing Corporation
John Wiley & Sons, Inc
Wiley
Schlagworte:
ISSN:1085-3375, 1687-0409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In general Banach spaces, we consider a vector optimization problem (SVOP) in which the objective is a set-valued mapping whose graph is the union of finitely many polyhedra or the union of finitely many generalized polyhedra. Dropping the compactness assumption, we establish some results on structure of the weak Pareto solution set, Pareto solution set, weak Pareto optimal value set, and Pareto optimal value set of (SVOP) and on connectedness of Pareto solution set and Pareto optimal value set of (SVOP). In particular, we improved and generalize, Arrow, Barankin, and Blackwell’s classical results in Euclidean spaces and Zheng and Yang’s results in general Banach spaces.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1085-3375
1687-0409
DOI:10.1155/2013/619206