The impact of hillslope groundwater dynamics and landscape functioning in event-flow generation: a field study in the Rietholzbach catchment, Switzerland
A reliable prediction of hydrograph responses in mountainous headwater catchments requires a mechanistic understanding of the coupled hydro-climatic processes in these regions. This study shows that only a small fraction of the total area in a pre-Alpine headwater catchment actively regulates stream...
Gespeichert in:
| Veröffentlicht in: | Hydrogeology journal Jg. 23; H. 5; S. 935 - 948 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2015
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1431-2174, 1435-0157 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | A reliable prediction of hydrograph responses in mountainous headwater catchments requires a mechanistic understanding of the coupled hydro-climatic processes in these regions. This study shows that only a small fraction of the total area in a pre-Alpine headwater catchment actively regulates streamflow responses to hydro-climatic forcing, which facilitates the application of a parsimonious framework for hydrograph time-series prediction. Based on landscape analysis and hydrometric data from the Upper Rietholzbach catchment (URHB, 0.94 km
2
, northeast Switzerland), a conceptual model was established. Here, the rainfall-event-driven contribution of surface runoff and subsurface flow (event flow) accounts for around 50 % of total river discharge. The event-flow hydrograph is generated from approximately 25 % of the entire area consisting of riparian zones (8 %) and adjacent hillslopes (17 %), each with characteristic streamflow-generating mechanisms. Baseflow generation is attributed to deep groundwater discharge from a fractured-rock aquifer covering ∼75 % of the catchment area. A minimalistic model, that represents event flow as depletion of two parallel linear reservoirs, verified the conceptual model of the URHB with adequate hydrograph simulations (
R
2
= 0.67, Nash-Sutcliffe efficiency (NSE) = 0.64). Hereby, the expansion of the event-flow contributing areas was found to be particularly significant during long and high-intensity rainfall events. These findings provide a generalized approach for the large-scale characterization of groundwater recharge and hydrological behavior of mountainous catchments with similar landscape properties. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1431-2174 1435-0157 |
| DOI: | 10.1007/s10040-015-1238-1 |