Stress corrosion cracking of pipelines
Pipelines sit at the heart of the global economy. When they are in good working order, they deliver fuel to meet the ever-growing demand for energy around the world. When they fail due to stress corrosion cracking, they can wreak environmental havoc. This book skillfully explains the fundamental sci...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Format: | E-Book Buch |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
WILEY
2013
John Wiley & Sons Wiely John Wiley & Sons, Incorporated Wiley-Blackwell |
| Ausgabe: | 1 |
| Schriftenreihe: | Wiley Series in Corrosion |
| Schlagworte: | |
| ISBN: | 111802267X, 1118536983, 9781118537022, 1118537025, 9781118536988, 9781118022672 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Inhaltsangabe:
- Stress corrosion cracking of pipelines -- Wiley series in corrosion -- Dedication -- Contents -- Foreword -- Preface -- List of abbreviations and symbols -- 1 Introduction -- 2. Fundamentals of stress corrosion cracking -- 3. Understanding pipeline stress corrosion cracking -- 4. Nearly neutral-pH stress corrosion cracking of pipelines -- 5. High-pH stress corrosion cracking of pipelines -- 6. Stress corrosion cracking of pipelines in acidic soil environments -- 7. Stress corrosion cracking at pipeline welds -- 8. Stress corrosion cracking of high-strength pipeline steels -- 9. Management of pipeline stress corrosion cracking -- Index.
- Title Page List of Abbreviations and Symbols Preface Table of Contents 1. Introduction 2. Fundamentals of Stress Corrosion Cracking 3. Understanding Pipeline Stress Corrosion Cracking 4. Nearly Neutral-pH Stress Corrosion Cracking of Pipelines 5. High-pH Stress Corrosion Cracking of Pipelines 6. Stress Corrosion Cracking of Pipelines in Acidic Soil Environments 7. Stress Corrosion Cracking at Pipeline Welds 8. Stress Corrosion Cracking of High-Strength Pipeline Steels 9. Management of Pipeline Stress Corrosion Cracking Index
- References -- 6 Stress Corrosion Cracking of Pipelines in Acidic Soil Environments -- 6.1 Introduction -- 6.2 Primary Characteristics -- 6.3 Electrochemical Corrosion Mechanism of Pipeline Steels in Acidic Soil Solutions -- 6.4 Mechanisms for Initiation and Propagation of Stress Corrosion Cracks -- 6.5 Effect of Strain Rate on the SCC of Pipelines in Acidic Soils -- References -- 7 Stress Corrosion Cracking at Pipeline Welds -- 7.1 Introduction -- 7.2 Fundamentals of Welding Metallurgy -- 7.2.1 Welding Processes -- 7.2.2 Welding Solidification and Microstructure -- 7.2.3 Parameters Affecting the Welding Process -- 7.2.4 Defects at the Weld -- 7.3 Pipeline Welding: Metallurgical Aspects -- 7.3.1 X70 Steel Weld -- 7.3.2 X80 Steel Weld -- 7.3.3 X100 Steel Weld -- 7.4 Pipeline Welding: Mechanical Aspects -- 7.4.1 Residual Stress -- 7.4.2 Hardness of the Weld -- 7.5 Pipeline Welding: Environmental Aspects -- 7.5.1 Introduction of Hydrogen into Welds -- 7.5.2 Corrosion at Welds -- 7.5.3 Electrochemistry of Localized Corrosion at Pipeline Welds -- 7.6 SCC at Pipeline Welds -- 7.6.1 Effects of Material Properties and Microstructure -- 7.6.2 Effects of the Welding Process -- 7.6.3 Hydrogen Sulfide SCC of Pipeline Welds -- References -- 8 Stress Corrosion Cracking of High-Strength Pipeline Steels -- 8.1 Introduction -- 8.2 Development of High-Strength Steel Pipeline Technology -- 8.2.1 Evolution of Pipeline Steels -- 8.2.2 High-Strength Steels in a Global Pipeline Application -- 8.3 Metallurgy of High-Strength Pipeline Steels -- 8.3.1 Thermomechanical Controlled Processing -- 8.3.2 Alloying Treatment -- 8.3.3 Microstructure of High-Strength Steels -- 8.3.4 Metallurgical Defects -- 8.4 Susceptibility of High-Strength Steels to Hydrogen Damage -- 8.4.1 Hydrogen Blistering and HIC of High-Strength Pipeline Steels
- 8.4.2 Hydrogen Permeation Behavior of High-Strength Pipeline Steels -- 8.5 Metallurgical Microelectrochemistry of High-Strength Pipeline Steels -- 8.5.1 Microelectrochemical Activity at Metallurgical Defects -- 8.5.2 Preferential Dissolution and Pitting Corrosion Around Inclusions -- 8.6 Strain Aging of High-Strength Steels and Its Implication on Pipeline SCC -- 8.6.1 Basics of Strain Aging -- 8.6.2 Strain Aging of High-Strength Pipeline Steels -- 8.6.3 Effect of Strain Aging on SCC of High-Strength Pipeline Steels -- 8.7 Strain-Based Design of High-Strength Steel Pipelines -- 8.7.1 Strain Due to Pipe-Ground Movement -- 8.7.2 Parametric Effects on Cracking of Pipelines Under SBD -- 8.8 Mechanoelectrochemical Effect of Corrosion of Pipelines Under Strain -- References -- 9 Management of Pipeline Stress Corrosion Cracking -- 9.1 SCC in Pipeline Integrity Management -- 9.1.1 Elements of Pipeline Integrity Management -- 9.1.2 Initial Assessment and Investigation of SCC Susceptibility -- 9.1.3 Classification of SCC Severity and Postassessment -- 9.1.4 SCC Site Selection -- 9.1.5 SCC Risk Assessment -- 9.2 Prevention of Pipeline SCC -- 9.2.1 Selection and Control of Materials -- 9.2.2 Control of Stress -- 9.2.3 Control of Environments -- 9.3 Monitoring and Detection of Pipeline SCC -- 9.3.1 In-Line Inspections -- 9.3.2 Intelligent Pigs -- 9.3.3 Hydrostatic Inspection -- 9.3.4 Pipeline Patrolling -- 9.4 Mitigation of Pipeline SCC -- References -- Index
- Intro -- Stress Corrosion Cracking of Pipelines -- Contents -- Foreword -- Preface -- List of Abbreviations and Symbols -- 1 Introduction -- 1.1 Pipelines as "Energy Highways" -- 1.2 Pipeline Safety and Integrity Management -- 1.3 Pipeline Stress Corrosion Cracking -- References -- 2 Fundamentals of Stress Corrosion Cracking -- 2.1 Definition of Stress Corrosion Cracking -- 2.2 Specific Metal-Environment Combinations -- 2.3 Metallurgical Aspects of SCC -- 2.3.1 Effect of Strength of Materials on SCC -- 2.3.2 Effect of Alloying Composition on SCC -- 2.3.3 Effect of Heat Treatment on SCC -- 2.3.4 Grain Boundary Precipitation -- 2.3.5 Grain Boundary Segregation -- 2.4 Electrochemistry of SCC -- 2.4.1 SCC Thermodynamics -- 2.4.2 SCC Kinetics -- 2.5 SCC Mechanisms -- 2.5.1 SCC Initiation Mechanisms -- 2.5.2 Dissolution-Based SCC Propagation -- 2.5.3 Mechanical Fracture-Based SCC Propagation -- 2.6 Effects of Hydrogen on SCC and Hydrogen Damage -- 2.6.1 Sources of Hydrogen -- 2.6.2 Characteristics of Hydrogen in Metals -- 2.6.3 The Hydrogen Effect -- 2.6.4 Mechanisms of Hydrogen Damage -- 2.7 Role of Microorganisms in SCC -- 2.7.1 Microbially Influenced Corrosion -- 2.7.2 Microorganisms Involved in MIC -- 2.7.3 Role of MIC in SCC Processes -- 2.8 Corrosion Fatigue -- 2.8.1 Features of Fatigue Failure -- 2.8.2 Features of Corrosion Fatigue -- 2.8.3 Factors Affecting CF and CF Management -- 2.9 Comparison of SCC, HIC, and CF -- References -- 3 Understanding Pipeline Stress Corrosion Cracking -- 3.1 Introduction -- 3.2 Practical Case History of SCC in Pipelines -- 3.2.1 Case 1: SCC of Enbridge Glenavon Pipelines (SCC in an Oil Pipeline) -- 3.2.2 Case 2: SCC of Williams Lake Pipelines (SCC in a Gas Pipeline) -- 3.3 General Features of Pipeline SCC -- 3.3.1 High-pH SCC of Pipelines -- 3.3.2 Nearly Neutral-pH SCC of Pipelines
- 3.3.3 Cracking Characteristics -- 3.4 Conditions for Pipeline SCC -- 3.4.1 Corrosive Environments -- 3.4.2 Susceptible Line Pipe Steels -- 3.4.3 Stress -- 3.5 Role of Pressure Fluctuation in Pipelines: SCC or Corrosion Fatigue? -- References -- 4 Nearly Neutral-pH Stress Corrosion Cracking of Pipelines -- 4.1 Introduction -- 4.2 Primary Characteristics -- 4.3 Contributing Factors -- 4.3.1 Coatings -- 4.3.2 Cathodic Protection -- 4.3.3 Soil Characteristics -- 4.3.4 Microorganisms -- 4.3.5 Temperature -- 4.3.6 Stress -- 4.3.7 Steel Metallurgy -- 4.4 Initiation of Stress Corrosion Cracks from Corrosion Pits -- 4.5 Stress Corrosion Crack Propagation Mechanism -- 4.5.1 Role of Hydrogen in Enhanced Corrosion of Steels -- 4.5.2 Potential-Dependent Nearly Neutral-pH SCC of Pipelines -- 4.5.3 Pipeline Steels in Nearly Neutral-pH Solutions: Always Active Dissolution? -- 4.6 Models for Prediction of Nearly Neutral-pH SCC Propagation -- References -- 5 High-pH Stress Corrosion Cracking of Pipelines -- 5.1 Introduction -- 5.2 Primary Characteristics -- 5.3 Contributing Factors -- 5.3.1 Coatings -- 5.3.2 Cathodic Protection -- 5.3.3 Soil Characteristics -- 5.3.4 Microorganisms -- 5.3.5 Temperature -- 5.3.6 Stress -- 5.3.7 Metallurgies -- 5.4 Mechanisms for Stress Corrosion Crack Initiation -- 5.4.1 Electrochemical Corrosion Mechanism of Pipeline Steels in a Thin Layer of Carbonate-Bicarbonate Electrolyte Trapped Under a Disbonded Coating -- 5.4.2 Conceptual Model for Initiation of Stress Corrosion Cracks in a High-pH Carbonate-Bicarbonate Electrolyte Under a Disbonded Coating -- 5.5 Mechanisms for Stress Corrosion Crack Propagation -- 5.5.1 Enhanced Anodic Dissolution at a Crack Tip -- 5.5.2 Enhanced Pitting Corrosion at a Crack Tip -- 5.5.3 Relevance to Grain Boundary Structure -- 5.6 Models for the Prediction of a High-pH Stress Corrosion Crack Growth Rate

