Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning

Transition-metal complexes are attractive targets for the design of catalysts and functional materials. The behavior of the metal-organic bond, while very tunable for achieving target properties, is challenging to predict and necessitates searching a wide and complex space to identify needles in hay...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemical reviews Ročník 121; číslo 16; s. 9927
Hlavní autoři: Nandy, Aditya, Duan, Chenru, Taylor, Michael G, Liu, Fang, Steeves, Adam H, Kulik, Heather J
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 25.08.2021
Témata:
ISSN:1520-6890, 1520-6890
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Transition-metal complexes are attractive targets for the design of catalysts and functional materials. The behavior of the metal-organic bond, while very tunable for achieving target properties, is challenging to predict and necessitates searching a wide and complex space to identify needles in haystacks for target applications. This review will focus on the techniques that make high-throughput search of transition-metal chemical space feasible for the discovery of complexes with desirable properties. The review will cover the development, promise, and limitations of "traditional" computational chemistry (i.e., force field, semiempirical, and density functional theory methods) as it pertains to data generation for inorganic molecular discovery. The review will also discuss the opportunities and limitations in leveraging experimental data sources. We will focus on how advances in statistical modeling, artificial intelligence, multiobjective optimization, and automation accelerate discovery of lead compounds and design rules. The overall objective of this review is to showcase how bringing together advances from diverse areas of computational chemistry and computer science have enabled the rapid uncovering of structure-property relationships in transition-metal chemistry. We aim to highlight how unique considerations in motifs of metal-organic bonding (e.g., variable spin and oxidation state, and bonding strength/nature) set them and their discovery apart from more commonly considered organic molecules. We will also highlight how uncertainty and relative data scarcity in transition-metal chemistry motivate specific developments in machine learning representations, model training, and in computational chemistry. Finally, we will conclude with an outlook of areas of opportunity for the accelerated discovery of transition-metal complexes.
AbstractList Transition-metal complexes are attractive targets for the design of catalysts and functional materials. The behavior of the metal-organic bond, while very tunable for achieving target properties, is challenging to predict and necessitates searching a wide and complex space to identify needles in haystacks for target applications. This review will focus on the techniques that make high-throughput search of transition-metal chemical space feasible for the discovery of complexes with desirable properties. The review will cover the development, promise, and limitations of "traditional" computational chemistry (i.e., force field, semiempirical, and density functional theory methods) as it pertains to data generation for inorganic molecular discovery. The review will also discuss the opportunities and limitations in leveraging experimental data sources. We will focus on how advances in statistical modeling, artificial intelligence, multiobjective optimization, and automation accelerate discovery of lead compounds and design rules. The overall objective of this review is to showcase how bringing together advances from diverse areas of computational chemistry and computer science have enabled the rapid uncovering of structure-property relationships in transition-metal chemistry. We aim to highlight how unique considerations in motifs of metal-organic bonding (e.g., variable spin and oxidation state, and bonding strength/nature) set them and their discovery apart from more commonly considered organic molecules. We will also highlight how uncertainty and relative data scarcity in transition-metal chemistry motivate specific developments in machine learning representations, model training, and in computational chemistry. Finally, we will conclude with an outlook of areas of opportunity for the accelerated discovery of transition-metal complexes.Transition-metal complexes are attractive targets for the design of catalysts and functional materials. The behavior of the metal-organic bond, while very tunable for achieving target properties, is challenging to predict and necessitates searching a wide and complex space to identify needles in haystacks for target applications. This review will focus on the techniques that make high-throughput search of transition-metal chemical space feasible for the discovery of complexes with desirable properties. The review will cover the development, promise, and limitations of "traditional" computational chemistry (i.e., force field, semiempirical, and density functional theory methods) as it pertains to data generation for inorganic molecular discovery. The review will also discuss the opportunities and limitations in leveraging experimental data sources. We will focus on how advances in statistical modeling, artificial intelligence, multiobjective optimization, and automation accelerate discovery of lead compounds and design rules. The overall objective of this review is to showcase how bringing together advances from diverse areas of computational chemistry and computer science have enabled the rapid uncovering of structure-property relationships in transition-metal chemistry. We aim to highlight how unique considerations in motifs of metal-organic bonding (e.g., variable spin and oxidation state, and bonding strength/nature) set them and their discovery apart from more commonly considered organic molecules. We will also highlight how uncertainty and relative data scarcity in transition-metal chemistry motivate specific developments in machine learning representations, model training, and in computational chemistry. Finally, we will conclude with an outlook of areas of opportunity for the accelerated discovery of transition-metal complexes.
Transition-metal complexes are attractive targets for the design of catalysts and functional materials. The behavior of the metal-organic bond, while very tunable for achieving target properties, is challenging to predict and necessitates searching a wide and complex space to identify needles in haystacks for target applications. This review will focus on the techniques that make high-throughput search of transition-metal chemical space feasible for the discovery of complexes with desirable properties. The review will cover the development, promise, and limitations of "traditional" computational chemistry (i.e., force field, semiempirical, and density functional theory methods) as it pertains to data generation for inorganic molecular discovery. The review will also discuss the opportunities and limitations in leveraging experimental data sources. We will focus on how advances in statistical modeling, artificial intelligence, multiobjective optimization, and automation accelerate discovery of lead compounds and design rules. The overall objective of this review is to showcase how bringing together advances from diverse areas of computational chemistry and computer science have enabled the rapid uncovering of structure-property relationships in transition-metal chemistry. We aim to highlight how unique considerations in motifs of metal-organic bonding (e.g., variable spin and oxidation state, and bonding strength/nature) set them and their discovery apart from more commonly considered organic molecules. We will also highlight how uncertainty and relative data scarcity in transition-metal chemistry motivate specific developments in machine learning representations, model training, and in computational chemistry. Finally, we will conclude with an outlook of areas of opportunity for the accelerated discovery of transition-metal complexes.
Author Duan, Chenru
Nandy, Aditya
Kulik, Heather J
Liu, Fang
Taylor, Michael G
Steeves, Adam H
Author_xml – sequence: 1
  givenname: Aditya
  orcidid: 0000-0001-7137-5449
  surname: Nandy
  fullname: Nandy, Aditya
  organization: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
– sequence: 2
  givenname: Chenru
  orcidid: 0000-0003-2592-4237
  surname: Duan
  fullname: Duan, Chenru
  organization: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
– sequence: 3
  givenname: Michael G
  orcidid: 0000-0003-4327-2746
  surname: Taylor
  fullname: Taylor, Michael G
  organization: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
– sequence: 4
  givenname: Fang
  orcidid: 0000-0003-1322-4997
  surname: Liu
  fullname: Liu, Fang
  organization: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
– sequence: 5
  givenname: Adam H
  orcidid: 0000-0001-5813-4659
  surname: Steeves
  fullname: Steeves, Adam H
  organization: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
– sequence: 6
  givenname: Heather J
  orcidid: 0000-0001-9342-0191
  surname: Kulik
  fullname: Kulik, Heather J
  organization: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34260198$$D View this record in MEDLINE/PubMed
BookMark eNpNkF9LwzAUxYNM3B_9BILk0ZfOm6xNU99kOidMfHA-lzS7XSNtMpN2uG9vhxN8Opdzfhy4Z0wG1lkk5JrBlAFnd0qHqa6w8bifMg0wi9MzMmIJh0jIDAb_7iEZh_AJAEnC0wsynMVcAMvkiJi5a3Zdq1rjrKrpowna7dEfqCvp2isbzDGJGmz79MjW-I3hni68a-jSbKuorbzrtlVfQt-1R7TGbmnr6KvSlbFIV6j80bsk56WqA16ddEI-Fk_r-TJavT2_zB9WkUriuI0YglCJTJFvUqmFhKIsNYc4K0DydKazQpcyK5MNZJpLjQJLlsWxLlKWAhSCT8jtb-_Ou68OQ5s3_VNY18qi60LO-w1AMJGwHr05oV3R4CbfedMof8j_5uE_3WVsyA
CitedBy_id crossref_primary_10_1038_s43588_022_00393_z
crossref_primary_10_1038_s41524_022_00922_4
crossref_primary_10_1038_s41598_024_62074_3
crossref_primary_10_1002_anie_202420204
crossref_primary_10_1002_jcc_27185
crossref_primary_10_1007_s13399_024_05604_3
crossref_primary_10_1039_D5BM00687B
crossref_primary_10_3390_catal12020164
crossref_primary_10_1039_D5DD00216H
crossref_primary_10_1038_s41570_022_00424_3
crossref_primary_10_1002_aoc_7077
crossref_primary_10_1039_D5NJ00827A
crossref_primary_10_1007_s40820_023_01192_5
crossref_primary_10_1021_jacs_4c17015
crossref_primary_10_1002_anie_202116175
crossref_primary_10_1002_cctc_202301215
crossref_primary_10_1002_smll_202301037
crossref_primary_10_1021_jacs_2c08513
crossref_primary_10_1021_jacs_2c08876
crossref_primary_10_1063_5_0201701
crossref_primary_10_1038_s44160_022_00133_1
crossref_primary_10_1038_s43588_024_00616_5
crossref_primary_10_1002_asia_202500512
crossref_primary_10_1039_D5DD00093A
crossref_primary_10_1016_j_polymer_2024_126997
crossref_primary_10_1039_D3SC03319H
crossref_primary_10_3389_fphy_2025_1580425
crossref_primary_10_1016_j_talanta_2022_123228
crossref_primary_10_1186_s13321_024_00939_5
crossref_primary_10_1063_5_0248572
crossref_primary_10_1039_D4SC03647F
crossref_primary_10_1021_acs_jcim_5c00815
crossref_primary_10_1038_d41586_025_00902_w
crossref_primary_10_1002_ange_202116175
crossref_primary_10_1088_2632_2153_addc32
crossref_primary_10_1039_D2CY00200K
crossref_primary_10_1021_acs_inorgchem_5c01726
crossref_primary_10_1021_jacsau_5c00502
crossref_primary_10_1002_cplu_202300702
crossref_primary_10_1088_1361_6463_ac6f97
crossref_primary_10_1021_jacs_2c11066
crossref_primary_10_1016_j_ica_2025_122894
crossref_primary_10_1016_j_ccr_2025_217187
crossref_primary_10_1142_S2810922825300028
crossref_primary_10_1016_j_nxmate_2025_100864
crossref_primary_10_1021_acs_jpclett_4c03568
crossref_primary_10_1007_s00214_023_02974_1
crossref_primary_10_1016_j_commatsci_2025_114121
crossref_primary_10_1016_j_pnsc_2025_05_002
crossref_primary_10_59324_ejaset_2025_3_4__13
crossref_primary_10_1016_j_apcatb_2024_124622
crossref_primary_10_1016_j_mcat_2023_113450
crossref_primary_10_1021_acsami_4c22658
crossref_primary_10_1039_D4SC05471G
crossref_primary_10_1002_ange_202420204
crossref_primary_10_1016_j_molstruc_2023_136866
crossref_primary_10_1038_s43588_022_00384_0
crossref_primary_10_3233_JIFS_220781
crossref_primary_10_1063_5_0136526
crossref_primary_10_1002_adma_202502407
crossref_primary_10_1002_aoc_7021
crossref_primary_10_1021_acs_jpclett_5c01940
crossref_primary_10_1039_D5DT00812C
crossref_primary_10_1007_s40843_025_3399_3
crossref_primary_10_1134_S1061934823070055
crossref_primary_10_1021_jacsau_5c00242
crossref_primary_10_1088_2632_2153_ad9f22
crossref_primary_10_1557_s43578_025_01568_w
crossref_primary_10_1088_2515_7655_ade5cb
crossref_primary_10_1039_D4SC05616G
crossref_primary_10_1038_s42256_025_01010_0
crossref_primary_10_1002_cmtd_202400071
crossref_primary_10_1002_poc_4458
crossref_primary_10_1038_s44160_022_00128_y
crossref_primary_10_1021_acs_jctc_5c00886
crossref_primary_10_1021_acs_jctc_5c00402
crossref_primary_10_1039_D5DT01438G
crossref_primary_10_1103_PhysRevB_111_085110
crossref_primary_10_1002_chem_202201570
crossref_primary_10_1016_j_coche_2021_100752
crossref_primary_10_1016_j_fuel_2025_136132
crossref_primary_10_1039_D3SC04610A
crossref_primary_10_1002_cjce_25437
crossref_primary_10_1038_s43588_024_00618_3
crossref_primary_10_1021_cbe_4c00170
crossref_primary_10_1038_s41524_024_01339_x
crossref_primary_10_1016_j_jechem_2023_02_043
crossref_primary_10_1016_j_nxmate_2025_100713
crossref_primary_10_1039_D2SC05089G
crossref_primary_10_1038_s41377_024_01734_5
crossref_primary_10_1016_j_compchemeng_2022_108022
crossref_primary_10_1002_jcc_27013
crossref_primary_10_1039_D2SC04251G
crossref_primary_10_1002_advs_202506240
crossref_primary_10_1016_j_ccr_2023_215169
crossref_primary_10_3390_molecules28114477
crossref_primary_10_1038_s44160_024_00561_1
crossref_primary_10_1021_jacs_3c11399
crossref_primary_10_1039_D5TA01139F
crossref_primary_10_1021_acs_jctc_5c00303
crossref_primary_10_1016_j_coche_2021_100778
crossref_primary_10_1146_annurev_chembioeng_092320_120230
crossref_primary_10_1002_cctc_202301475
crossref_primary_10_1016_j_jece_2025_118132
crossref_primary_10_1021_acs_jctc_5c01079
crossref_primary_10_1038_s41524_024_01466_5
crossref_primary_10_1134_S0036024423020188
crossref_primary_10_1002_cplu_202400686
crossref_primary_10_1007_s11243_024_00572_z
crossref_primary_10_1002_adma_202306733
crossref_primary_10_1016_j_inoche_2024_113770
crossref_primary_10_30799_jacs_272_25110103
crossref_primary_10_3390_cancers17111828
crossref_primary_10_1002_idm2_12249
crossref_primary_10_1016_j_saa_2024_125138
crossref_primary_10_1021_jacs_4c14076
crossref_primary_10_1021_jacs_5c02097
crossref_primary_10_1021_acs_jpca_4c05718
crossref_primary_10_1016_j_jcat_2021_12_014
crossref_primary_10_1039_D5DD00129C
crossref_primary_10_1016_j_mtener_2025_102002
crossref_primary_10_1038_s41524_025_01523_7
crossref_primary_10_1080_00194506_2024_2444394
crossref_primary_10_1007_s11244_021_01543_9
crossref_primary_10_1016_j_asoc_2024_111935
crossref_primary_10_1002_cssc_202300482
crossref_primary_10_1107_S2052252524000770
crossref_primary_10_1007_s42773_023_00225_x
crossref_primary_10_1021_acs_jcim_5c00636
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.chemrev.1c00347
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6890
ExternalDocumentID 34260198
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
.K2
29B
4.4
53G
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AFXLT
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CGR
CS3
CUPRZ
CUY
CVF
D0L
DU5
EBS
ECM
ED~
EIF
F5P
GGK
GNL
IH9
IHE
JG~
LG6
NPM
P2P
PQQKQ
ROL
RWL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
W1F
WH7
XSW
YZZ
~02
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a544t-1e06a587e2d78c680bffc2049b08273c9bcf89f5d09c28ce6ef1944cb71700b62
IEDL.DBID 7X8
ISICitedReferencesCount 219
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000691784200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-6890
IngestDate Fri Jul 11 11:17:24 EDT 2025
Thu Apr 03 07:05:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a544t-1e06a587e2d78c680bffc2049b08273c9bcf89f5d09c28ce6ef1944cb71700b62
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9342-0191
0000-0003-1322-4997
0000-0001-7137-5449
0000-0003-2592-4237
0000-0003-4327-2746
0000-0001-5813-4659
OpenAccessLink https://www.osti.gov/biblio/1808009
PMID 34260198
PQID 2552061651
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2552061651
pubmed_primary_34260198
PublicationCentury 2000
PublicationDate 2021-08-25
PublicationDateYYYYMMDD 2021-08-25
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Chemical reviews
PublicationTitleAlternate Chem Rev
PublicationYear 2021
SSID ssj0005527
Score 2.6969266
SecondaryResourceType review_article
Snippet Transition-metal complexes are attractive targets for the design of catalysts and functional materials. The behavior of the metal-organic bond, while very...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 9927
SubjectTerms Coordination Complexes - chemistry
High-Throughput Screening Assays
Machine Learning
Metals - chemistry
Transition Elements - chemistry
Title Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/34260198
https://www.proquest.com/docview/2552061651
Volume 121
WOSCitedRecordID wos000691784200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qBH3xfpk3Ivha1qRpm_giMh0-uDHwwt5KkiY6cO1cp-i_96QX9iQIvvSpDW2SnvOdk4_vQ-hCKWJFGDjaoFUeozLyZCiVp6CaMExxxkoppef7eDDgo5EY1g23oqZVNjGxDNRprl2PvAPQl0LuiUJyNX33nGuUO12tLTSWUSsAKOMoXfFooRYeVpatkKKgROLCb1SHKOlIDUv6aibO6IVop9IS_44xy1zT2_zvW26hjRpl4utqW2yjJZPtoLVuY-62i8aVm0PdCcQ340I7Luc3zi0u01fJ5PImBrA5dve-mS9TXOLeLJ9gxw3xaoMfGAQ_aEfegRyI5znul-xMg2vh1pc99NS7fezeebXrAiwSY3OPGD-SIY8NTWOuI-4razWFQkIBWogDLZS2XNgw9YWmXJvIWCIY0yp2Un8qovtoJcszc4gwC1IAMDKyXANwMRAKQun7UpGQaxZQ0kbnzSwm8P3uqEJmJv8oksU8ttFBtRTJtJLfSAInqk8EP_rD08donToSSsnYO0EtC_-0OUWr-nM-LmZn5XaB62DY_wEiAMuy
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Discovery+of+Transition-metal+Complexes%3A+From+High-throughput+Screening+to+Machine+Learning&rft.jtitle=Chemical+reviews&rft.au=Nandy%2C+Aditya&rft.au=Duan%2C+Chenru&rft.au=Taylor%2C+Michael+G&rft.au=Liu%2C+Fang&rft.date=2021-08-25&rft.eissn=1520-6890&rft.volume=121&rft.issue=16&rft.spage=9927&rft_id=info:doi/10.1021%2Facs.chemrev.1c00347&rft_id=info%3Apmid%2F34260198&rft_id=info%3Apmid%2F34260198&rft.externalDocID=34260198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6890&client=summon