Machine Learning with R

Written as a tutorial to explore and understand the power of R for machine learning. This practical guide covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the r...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavný autor: Lantz Brett
Médium: E-kniha
Jazyk:English
Vydavateľské údaje: Packt Publishing 2013
Predmet:
ISBN:9781782162148, 1782162143
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Obsah:
  • Title Page Preface Table of Contents 1. Introducing Machine Learning 2. Managing and Understanding Data 3. Lazy Learning - Classification Using Nearest Neighbors 4. Probabilistic Learning - Classification Using Naive Bayes 5. Divide and Conquer - Classification Using Decision Trees and Rules 6. Forecasting Numeric Data - Regression Methods 7. Black Box Methods - Neural Networks and Support Vector Machines 8. Finding Patterns - Market Basket Analysis Using Association Rules 9. Finding Groups of Data - Clustering with k-Means 10. Evaluating Model Performance 11. Improving Model Performance 12. Specialized Machine Learning Topics Index