Net effect of ice-sheet–atmosphere interactions reduces simulated transient Miocene Antarctic ice-sheet variability
Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So far, however, realistic simulations of the Miocene AIS have been limited to equilibrium states under different CO2 levels and orbital settings....
Uloženo v:
| Vydáno v: | The cryosphere Ročník 16; číslo 4; s. 1315 - 1332 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Katlenburg-Lindau
Copernicus GmbH
11.04.2022
European Geosciences Union Copernicus Publications |
| Témata: | |
| ISSN: | 1994-0424, 1994-0416, 1994-0424, 1994-0416 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS).
So far, however, realistic simulations of the Miocene AIS have been limited to equilibrium states under different CO2 levels and orbital settings.
Earlier transient simulations lacked ice-sheet–atmosphere interactions and used a present-day rather than Miocene Antarctic bedrock topography.
Here, we quantify the effect of ice-sheet–atmosphere interactions, running the ice-sheet model IMAU-ICE using climate forcing from Miocene simulations by the general circulation model GENESIS.
Utilising a recently developed matrix interpolation method enables us to interpolate the climate forcing based on CO2 levels (between 280 and 840 ppm), as well as varying ice-sheet configurations (between no ice and a large East Antarctic Ice Sheet).
We furthermore implement recent reconstructions of Miocene Antarctic bedrock topography.
We find that the positive albedo–temperature feedback, partly compensated for by a negative feedback between ice volume and precipitation, increases hysteresis in the relation between CO2 and ice volume.
Together, these ice-sheet–atmosphere interactions decrease the amplitude of Miocene AIS variability in idealised transient simulations.
Forced by quasi-orbital 40 kyr forcing CO2 cycles, the ice volume variability reduces by 21 % when ice-sheet–atmosphere interactions are included compared to when forcing variability is only based on CO2 changes.
Thereby, these interactions also diminish the contribution of AIS variability to benthic δ18O fluctuations.
Evolving bedrock topography during the early and mid-Miocene also reduces ice volume variability by 10 % under equal 40 kyr cycles of atmosphere and ocean forcing. |
|---|---|
| AbstractList | Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So far, however, realistic simulations of the Miocene AIS have been limited to equilibrium states under different CO2 levels and orbital settings. Earlier transient simulations lacked ice-sheet–atmosphere interactions and used a present-day rather than Miocene Antarctic bedrock topography. Here, we quantify the effect of ice-sheet–atmosphere interactions, running the ice-sheet model IMAU-ICE using climate forcing from Miocene simulations by the general circulation model GENESIS. Utilising a recently developed matrix interpolation method enables us to interpolate the climate forcing based on CO2 levels (between 280 and 840 ppm), as well as varying ice-sheet configurations (between no ice and a large East Antarctic Ice Sheet). We furthermore implement recent reconstructions of Miocene Antarctic bedrock topography. We find that the positive albedo–temperature feedback, partly compensated for by a negative feedback between ice volume and precipitation, increases hysteresis in the relation between CO2 and ice volume. Together, these ice-sheet–atmosphere interactions decrease the amplitude of Miocene AIS variability in idealised transient simulations. Forced by quasi-orbital 40 kyr forcing CO2 cycles, the ice volume variability reduces by 21 % when ice-sheet–atmosphere interactions are included compared to when forcing variability is only based on CO2 changes. Thereby, these interactions also diminish the contribution of AIS variability to benthic δ18O fluctuations. Evolving bedrock topography during the early and mid-Miocene also reduces ice volume variability by 10 % under equal 40 kyr cycles of atmosphere and ocean forcing. Benthic δ18 O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So far, however, realistic simulations of the Miocene AIS have been limited to equilibrium states under different CO 2 levels and orbital settings. Earlier transient simulations lacked ice-sheet–atmosphere interactions and used a present-day rather than Miocene Antarctic bedrock topography. Here, we quantify the effect of ice-sheet–atmosphere interactions, running the ice-sheet model IMAU-ICE using climate forcing from Miocene simulations by the general circulation model GENESIS. Utilising a recently developed matrix interpolation method enables us to interpolate the climate forcing based on CO 2 levels (between 280 and 840 ppm), as well as varying ice-sheet configurations (between no ice and a large East Antarctic Ice Sheet). We furthermore implement recent reconstructions of Miocene Antarctic bedrock topography. We find that the positive albedo–temperature feedback, partly compensated for by a negative feedback between ice volume and precipitation, increases hysteresis in the relation between CO 2 and ice volume. Together, these ice-sheet–atmosphere interactions decrease the amplitude of Miocene AIS variability in idealised transient simulations. Forced by quasi-orbital 40 kyr forcing CO 2 cycles, the ice volume variability reduces by 21 % when ice-sheet–atmosphere interactions are included compared to when forcing variability is only based on CO 2 changes. Thereby, these interactions also diminish the contribution of AIS variability to benthic δ18 O fluctuations. Evolving bedrock topography during the early and mid-Miocene also reduces ice volume variability by 10 % under equal 40 kyr cycles of atmosphere and ocean forcing. Benthic [delta].sup.18 O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So far, however, realistic simulations of the Miocene AIS have been limited to equilibrium states under different CO.sub.2 levels and orbital settings. Earlier transient simulations lacked ice-sheet-atmosphere interactions and used a present-day rather than Miocene Antarctic bedrock topography. Here, we quantify the effect of ice-sheet-atmosphere interactions, running the ice-sheet model IMAU-ICE using climate forcing from Miocene simulations by the general circulation model GENESIS. Utilising a recently developed matrix interpolation method enables us to interpolate the climate forcing based on CO.sub.2 levels (between 280 and 840 ppm), as well as varying ice-sheet configurations (between no ice and a large East Antarctic Ice Sheet). We furthermore implement recent reconstructions of Miocene Antarctic bedrock topography. We find that the positive albedo-temperature feedback, partly compensated for by a negative feedback between ice volume and precipitation, increases hysteresis in the relation between CO.sub.2 and ice volume. Together, these ice-sheet-atmosphere interactions decrease the amplitude of Miocene AIS variability in idealised transient simulations. Forced by quasi-orbital 40 kyr forcing CO.sub.2 cycles, the ice volume variability reduces by 21 % when ice-sheet-atmosphere interactions are included compared to when forcing variability is only based on CO.sub.2 changes. Thereby, these interactions also diminish the contribution of AIS variability to benthic [delta].sup.18 O fluctuations. Evolving bedrock topography during the early and mid-Miocene also reduces ice volume variability by 10 % under equal 40 kyr cycles of atmosphere and ocean forcing. Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So far, however, realistic simulations of the Miocene AIS have been limited to equilibrium states under different CO2 levels and orbital settings. Earlier transient simulations lacked ice-sheet–atmosphere interactions and used a present-day rather than Miocene Antarctic bedrock topography. Here, we quantify the effect of ice-sheet–atmosphere interactions, running the ice-sheet model IMAU-ICE using climate forcing from Miocene simulations by the general circulation model GENESIS. Utilising a recently developed matrix interpolation method enables us to interpolate the climate forcing based on CO2 levels (between 280 and 840 ppm), as well as varying ice-sheet configurations (between no ice and a large East Antarctic Ice Sheet). We furthermore implement recent reconstructions of Miocene Antarctic bedrock topography. We find that the positive albedo–temperature feedback, partly compensated for by a negative feedback between ice volume and precipitation, increases hysteresis in the relation between CO2 and ice volume. Together, these ice-sheet–atmosphere interactions decrease the amplitude of Miocene AIS variability in idealised transient simulations. Forced by quasi-orbital 40 kyr forcing CO2 cycles, the ice volume variability reduces by 21 % when ice-sheet–atmosphere interactions are included compared to when forcing variability is only based on CO2 changes. Thereby, these interactions also diminish the contribution of AIS variability to benthic δ18O fluctuations. Evolving bedrock topography during the early and mid-Miocene also reduces ice volume variability by 10 % under equal 40 kyr cycles of atmosphere and ocean forcing. |
| Audience | Academic |
| Author | Berends, Constantijn J. Stap, Lennert B. Scherrenberg, Meike D. W. Gasson, Edward G. W. van de Wal, Roderik S. W. |
| Author_xml | – sequence: 1 givenname: Lennert B. orcidid: 0000-0002-2108-3533 surname: Stap fullname: Stap, Lennert B. – sequence: 2 givenname: Constantijn J. orcidid: 0000-0002-2961-0350 surname: Berends fullname: Berends, Constantijn J. – sequence: 3 givenname: Meike D. W. orcidid: 0000-0002-9708-1008 surname: Scherrenberg fullname: Scherrenberg, Meike D. W. – sequence: 4 givenname: Roderik S. W. surname: van de Wal fullname: van de Wal, Roderik S. W. – sequence: 5 givenname: Edward G. W. surname: Gasson fullname: Gasson, Edward G. W. |
| BackLink | https://hal.science/hal-04665709$$DView record in HAL |
| BookMark | eNp1kstu1DAUhiNUJNrCmm0kVl2ktR3biZejCuhIU5C4rK0T-2TGo0w82E5Fd7wDb8iT4HS4DQJ5Yevo-3-f21lxMvoRi-I5JZeCKn6VTEVlRWsqKkYYe1ScUqV4RTjjJ3-8nxRnMW4JkUwRflpMbzCV2PdoUun70hms4gYxffvyFdLOx_0GA5ZuTBjAJOfHWAa0k8FYRrebBkhoyxRgjA7HVN46b3DEcjEmCJk3vx3LOwgOOje4dP-0eNzDEPHZj_u8-Pjq5Yfrm2r19vXyerGqQNQ8VcoS0eWXrHnXdEiZFSBIZztjhJJQS9l3xAreKiGwpWgNcNv0pmWqE6wx9XmxPPhaD1u9D24H4V57cPoh4MNaQ8hZDqiVMF0vAYUB5MzwtlOUmRpREuAt2ux1cfDawHBkdbNY6TlGuJSiIeqOZvbFgd0H_2nCmPTWT2HMpWomc7ptMxf1i1pDTsCNvc-NNDsXjV40hNA8MyUydfkPKh-LO2fyDvQux48EF0eCzCT8nNYwxaiX798ds-LAmuBjDNhr4xLMc86fuEFToufl0sloKvW8XHperqy7-kv3syP_U3wH6u7TqQ |
| CitedBy_id | crossref_primary_10_5194_cp_20_1919_2024 crossref_primary_10_1038_s41467_023_43106_4 crossref_primary_10_5194_cp_19_399_2023 crossref_primary_10_5194_cp_20_257_2024 |
| Cites_doi | 10.1051/0004-6361:20041335 10.5194/tc-9-881-2015 10.1175/JPO-D-18-0131.1 10.1175/1520-0442(1999)012<2169:TDROTG>2.0.CO;2 10.5194/gmd-3-13-2010 10.1029/2020PA003900 10.1029/2008GC002046 10.5194/cp-14-1275-2018 10.3189/172756404781814708 10.1038/nature06588 10.1038/s41561-018-0284-4 10.1038/ncomms15681 10.1130/B35814.1 10.3189/172756400781819941 10.1016/S1463-5003(02)00019-7 10.1029/2020GC009122 10.1029/2020GL090003 10.1038/s41586-021-04148-0 10.1038/s41558-017-0020-x 10.5194/tc-13-1043-2019 10.1029/2008JF001179 10.1016/j.gloplacha.2011.11.003 10.1038/ngeo1783 10.5194/cp-17-361-2021 10.1016/j.epsl.2021.116908 10.1002/essoar.10505870.1 10.5194/cp-10-451-2014 10.5194/cp-5-633-2009 10.1002/palo.20015 10.1002/2013PA002538 10.5194/cp-7-869-2011 10.5194/cp-15-1603-2019 10.1007/s00382-012-1562-2 10.1016/j.epsl.2004.04.011 10.1038/nature01290 10.1073/pnas.1615440114 10.1016/S0031-0182(03)00394-8 10.5194/tc-14-3935-2020 10.1007/s10584-010-9830-9 10.1029/2001JD900232 10.1002/2014PA002653 10.1016/S0277-3791(01)00082-8 10.1016/j.gloplacha.2012.03.003 10.1016/j.gloplacha.2004.09.011 10.1175/1520-0442(1997)010<0871:GAAMBF>2.0.CO;2 10.1038/nature12374 10.1016/j.palaeo.2019.109346 10.3189/172756410791392736 10.1029/2008PA001704 10.1038/nature07809 10.1029/2007GC001736 10.1038/ncomms3999 10.1038/s41467-017-02609-7 10.1002/2016PA002958 10.1130/G40228.1 10.1073/pnas.1516030113 10.1029/JC090iC01p01100 10.1038/s41598-018-29718-7 10.1029/2006JF000664 10.1073/pnas.0708588105 10.1016/j.palaeo.2011.05.028 10.1038/s41561-019-0510-8 10.1038/s41467-018-07206-w 10.1016/j.palaeo.2019.109374 10.1029/2020PA004037 10.5194/cp-14-1015-2018 10.1038/s41586-020-2727-5 10.1038/nature07867 10.1256/qj.04.176 10.1016/j.palaeo.2005.07.027 10.1016/j.gloplacha.2013.09.012 10.5194/tc-5-727-2011 10.1016/j.epsl.2012.06.007 10.5194/cp-13-1243-2017 10.1126/sciadv.abf5326 10.1029/2020PA003971 10.1002/2013PA002593 10.1038/s41561-021-00745-w 10.3189/S0260305500013586 10.1038/316591a0 10.1017/jog.2020.67 10.5194/tc-5-715-2011 10.5194/gmd-11-4657-2018 10.1029/2020PA003927 10.1016/S1040-6182(02)00023-X 10.1073/pnas.1516130113 10.1029/2019GL082163 10.5194/tc-12-1969-2018 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 Copernicus GmbH 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: COPYRIGHT 2022 Copernicus GmbH – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H95 H96 HCIFZ KL. L.G PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PYCSY 1XC VOOES DOA |
| DOI | 10.5194/tc-16-1315-2022 |
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Continental Europe Database Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Meteorology & Climatology Environmental Sciences |
| EISSN | 1994-0424 1994-0416 |
| EndPage | 1332 |
| ExternalDocumentID | oai_doaj_org_article_95cbf6ae5cae42c48b912c3ee60a48ed oai:HAL:hal-04665709v1 A700119995 10_5194_tc_16_1315_2022 |
| GroupedDBID | 29F 2WC 5GY 5VS 7XC 8CJ 8FE 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AENEX AEUYN AFFHD AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BHPHI BKSAR BPHCQ CCPQU CITATION D1J D1K E3Z ESX GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IEP IGS ISR ITC K6- KQ8 LK5 M7R MM- M~E OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PYCSY Q2X RKB RNS TR2 TUS ZBA ~02 7QH 7TG 7TN 7UA AZQEC C1K DWQXO F1W GNUQQ H95 H96 KL. L.G PKEHL PQEST PQUKI 1XC VOOES |
| ID | FETCH-LOGICAL-a534t-9d05b534634b7be12d5a50bdbcc596a366fb0d548955e81edca4d7fc829b527c3 |
| IEDL.DBID | RKB |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000780173200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1994-0424 1994-0416 |
| IngestDate | Tue Oct 14 19:02:44 EDT 2025 Sun Nov 30 03:08:01 EST 2025 Mon Jun 30 14:46:17 EDT 2025 Tue Nov 11 10:26:39 EST 2025 Tue Nov 04 17:53:51 EST 2025 Thu Nov 13 14:48:29 EST 2025 Sat Nov 29 06:35:00 EST 2025 Tue Nov 18 20:50:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a534t-9d05b534634b7be12d5a50bdbcc596a366fb0d548955e81edca4d7fc829b527c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2108-3533 0000-0002-2961-0350 0000-0002-9708-1008 |
| OpenAccessLink | https://doaj.org/article/95cbf6ae5cae42c48b912c3ee60a48ed |
| PQID | 2648987346 |
| PQPubID | 105732 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_95cbf6ae5cae42c48b912c3ee60a48ed hal_primary_oai_HAL_hal_04665709v1 proquest_journals_2648987346 gale_infotracmisc_A700119995 gale_infotracacademiconefile_A700119995 gale_incontextgauss_ISR_A700119995 crossref_citationtrail_10_5194_tc_16_1315_2022 crossref_primary_10_5194_tc_16_1315_2022 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-11 |
| PublicationDateYYYYMMDD | 2022-04-11 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | The cryosphere |
| PublicationYear | 2022 |
| Publisher | Copernicus GmbH European Geosciences Union Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: European Geosciences Union – name: Copernicus Publications |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref93 ref92 ref51 ref50 ref91 ref90 ref46 ref45 ref89 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref41 doi: 10.1051/0004-6361:20041335 – ident: ref17 doi: 10.5194/tc-9-881-2015 – ident: ref42 doi: 10.1175/JPO-D-18-0131.1 – ident: ref35 doi: 10.1175/1520-0442(1999)012<2169:TDROTG>2.0.CO;2 – ident: ref68 doi: 10.5194/gmd-3-13-2010 – ident: ref81 – ident: ref84 doi: 10.1029/2020PA003900 – ident: ref30 doi: 10.1029/2008GC002046 – ident: ref28 doi: 10.5194/cp-14-1275-2018 – ident: ref55 doi: 10.3189/172756404781814708 – ident: ref93 doi: 10.1038/nature06588 – ident: ref45 doi: 10.1038/s41561-018-0284-4 – ident: ref82 doi: 10.1038/ncomms15681 – ident: ref61 doi: 10.1130/B35814.1 – ident: ref36 doi: 10.3189/172756400781819941 – ident: ref3 doi: 10.1016/S1463-5003(02)00019-7 – ident: ref31 doi: 10.1029/2020GC009122 – ident: ref58 doi: 10.1029/2020GL090003 – ident: ref50 doi: 10.1038/s41586-021-04148-0 – ident: ref70 doi: 10.1038/s41558-017-0020-x – ident: ref60 doi: 10.5194/tc-13-1043-2019 – ident: ref11 doi: 10.1029/2008JF001179 – ident: ref29 doi: 10.1016/j.gloplacha.2011.11.003 – ident: ref85 doi: 10.1038/ngeo1783 – ident: ref7 doi: 10.5194/cp-17-361-2021 – ident: ref27 doi: 10.1016/j.epsl.2021.116908 – ident: ref12 doi: 10.1002/essoar.10505870.1 – ident: ref24 doi: 10.5194/cp-10-451-2014 – ident: ref39 doi: 10.5194/cp-5-633-2009 – ident: ref2 doi: 10.1002/palo.20015 – ident: ref33 doi: 10.1002/2013PA002538 – ident: ref46 doi: 10.5194/cp-7-869-2011 – ident: ref6 doi: 10.5194/cp-15-1603-2019 – ident: ref15 doi: 10.1007/s00382-012-1562-2 – ident: ref75 doi: 10.1016/j.epsl.2004.04.011 – ident: ref18 doi: 10.1038/nature01290 – ident: ref47 doi: 10.1073/pnas.1615440114 – ident: ref63 doi: 10.1016/S0031-0182(03)00394-8 – ident: ref20 doi: 10.5194/tc-14-3935-2020 – ident: ref62 doi: 10.1007/s10584-010-9830-9 – ident: ref71 doi: 10.1029/2001JD900232 – ident: ref26 doi: 10.1002/2014PA002653 – ident: ref34 doi: 10.1016/S0277-3791(01)00082-8 – ident: ref19 doi: 10.1016/j.gloplacha.2012.03.003 – ident: ref64 doi: 10.1016/j.gloplacha.2004.09.011 – ident: ref89 doi: 10.1175/1520-0442(1997)010<0871:GAAMBF>2.0.CO;2 – ident: ref1 doi: 10.1038/nature12374 – ident: ref57 doi: 10.1016/j.palaeo.2019.109346 – ident: ref14 doi: 10.3189/172756410791392736 – ident: ref40 doi: 10.1029/2008PA001704 – ident: ref65 doi: 10.1038/nature07809 – ident: ref76 doi: 10.1029/2007GC001736 – ident: ref16 doi: 10.1038/ncomms3999 – ident: ref73 doi: 10.1038/s41467-017-02609-7 – ident: ref77 doi: 10.1002/2016PA002958 – ident: ref87 doi: 10.1130/G40228.1 – ident: ref44 doi: 10.1073/pnas.1516030113 – ident: ref48 doi: 10.1029/JC090iC01p01100 – ident: ref13 doi: 10.1038/s41598-018-29718-7 – ident: ref74 doi: 10.1029/2006JF000664 – ident: ref32 – ident: ref37 doi: 10.1073/pnas.0708588105 – ident: ref91 doi: 10.1016/j.palaeo.2011.05.028 – ident: ref53 doi: 10.1038/s41561-019-0510-8 – ident: ref88 doi: 10.1038/s41467-018-07206-w – ident: ref66 doi: 10.1016/j.palaeo.2019.109374 – ident: ref83 doi: 10.1029/2020PA004037 – ident: ref8 doi: 10.5194/cp-14-1015-2018 – ident: ref23 doi: 10.1038/s41586-020-2727-5 – ident: ref4 – ident: ref54 doi: 10.1038/nature07867 – ident: ref90 doi: 10.1256/qj.04.176 – ident: ref59 doi: 10.1016/j.palaeo.2005.07.027 – ident: ref67 doi: 10.1016/j.gloplacha.2013.09.012 – ident: ref51 doi: 10.5194/tc-5-727-2011 – ident: ref22 doi: 10.1016/j.epsl.2012.06.007 – ident: ref78 doi: 10.5194/cp-13-1243-2017 – ident: ref21 – ident: ref72 doi: 10.1126/sciadv.abf5326 – ident: ref80 doi: 10.1029/2020PA003971 – ident: ref38 doi: 10.1002/2013PA002593 – ident: ref10 doi: 10.1038/s41561-021-00745-w – ident: ref43 doi: 10.3189/S0260305500013586 – ident: ref49 doi: 10.1038/316591a0 – ident: ref86 doi: 10.1017/jog.2020.67 – ident: ref92 doi: 10.5194/tc-5-715-2011 – ident: ref5 doi: 10.5194/gmd-11-4657-2018 – ident: ref56 – ident: ref52 doi: 10.1029/2020PA003927 – ident: ref9 doi: 10.1016/S1040-6182(02)00023-X – ident: ref25 doi: 10.1073/pnas.1516130113 – ident: ref79 doi: 10.1029/2019GL082163 – ident: ref69 doi: 10.5194/tc-12-1969-2018 |
| SSID | ssj0062904 |
| Score | 2.3241947 |
| Snippet | Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS).
So... Benthic [delta].sup.18 O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet... Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So... Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So... Benthic δ18 O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So... |
| SourceID | doaj hal proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1315 |
| SubjectTerms | Albedo Antarctic ice sheet Approximation Atmosphere Bedrock Benthos Carbon dioxide Climate Climate models Cycles Environmental Sciences Equilibrium Experiments Feedback General circulation models Glaciation Ice Ice sheet models Ice sheets Ice shelves Ice volume Interpolation Miocene Negative feedback Ocean temperature Precipitation (Meteorology) Sheet modelling Simulation Topography Variability Water temperature |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fi9QwEA96CPoieiqunhIOUV_qNW2SJo_r4XGCt4h_4N5Ckk7dhbuutN2Fe_M7-A39JM603dUVxBff-mcappnJZCaZ_IaxZ16CLawXSe41rVbhSDcGTAKVrIIofVrmQ7GJYjYz5-f2_W-lvignbIAHHjruyKoYKu1BRQ8yi9IEK7KYA-jUSwMlWV_0ejbB1GCDdWbTYT-ZgG_R5xhAfdBbkUddTARB7wmFGpJlO_NRD9u_Nc7X55Qb-YeJ7uedkzvs9ugw8unA6F12Dep9dnOsXT6_2meTM_R7l02_PM6f8-OLBTqh_d09tppBx4eUDb6sOBqFpJ0DdD--fffd5bIlTAHgBBnRDAccWt4Qliu0vF1cUmUvKHlH0xkdm-RnC5ztauDTusPxgQz9apGvMegeML-v7rPPJ28-HZ8mY6GFxKtcdoktUxXwSucyFAFEViqv0lCGGJXVPte6CmmJsY1VCoyAMnpZFlU0mQ0qK2L-gO3VyxoeMp5nvqqksAAml957Eyttg40yYAuF9hP2atPdLo4o5FQM48JhNELycV10QjuSjyP5TNjL7QdfBwCOv5O-JvltyQg5u3-A-uRGfXL_0qcJOyTpO8LGqCn55otfta17-_GDmxY9Qp61asJejETVErmPfjzLgH1AcFo7lAc7lDh4487rQ1SyHY5Pp-8cPUslbYqldi2wjY0OutHCtI4yE60pUGiP_sdvP2a3qAtpn0yIA7bXNSt4wm7Edbdom6f94PoJEF8qlg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELboFgku_BQQCwVZFQIuoXFiO_EJbatWRaKrqoDUm2U7k-5KbVKSbKXeeAfekCfBk3i3WiS4cEviiWV5fjwej78h5I3hoDJlWJQaidEqr-l5DnkEJS8tK0xcpEOxiWw6zc_O1EkIuLUhrXJpE3tDXdQOY-S7mInl98cplx-vvkdYNQpPV0MJjQ2yiUhlfEQ29w6mJ6dLWywTFQ_nygiAyxM-gPt4r4Xvdi5iCMHHhJeUJFlbl3r4_pWR3phhjuQfprpffw4f_u_IH5EHwfOkk0FUHpM7UG2Re6EI-uxmi4yPvQNdN32cnb6l-xdz7832b0_IYgodHXI_aF1Sb12idgbQ_frx03SXdYvgBEARe6IZbkq0tEFQWGhpO7_EEmFQ0A7XRbx_SY_nftmsgE6qziuaH9Btj_Ta794H8PCbp-Tb4cHX_aMoVGyIjEh5F6kiFtY_yZTbzAJLCmFEbAvrnFDSpFKWNi78JkkJATmDwhleZKXLE2VFkrn0GRlVdQXPCU0TU5acKYA85caY3JVSWeW49T1k0ozJhyW_tAtw5lhV40L7bQ0yWHdOM6mRwRoZPCbvVz9cDUgefyfdQwFYkSEEd_-hbs510GithLOlNCCcAZ44nlvFEpcCyNjwHIox2UHx0QiyUWEWz7lZtK3-9OVUT7Ieak8pMSbvAlFZ-9E7Ey5F-DlAXK41yu01Sm8F3FrzjpfStREfTT5r_BZzPF2L1TXzfSwlVAdT1epb8Xzx7-aX5D5ODh6lMbZNRl2zgFfkrrvu5m3zOmjeb3aEOJI priority: 102 providerName: ProQuest |
| Title | Net effect of ice-sheet–atmosphere interactions reduces simulated transient Miocene Antarctic ice-sheet variability |
| URI | https://www.proquest.com/docview/2648987346 https://hal.science/hal-04665709 https://doaj.org/article/95cbf6ae5cae42c48b912c3ee60a48ed |
| Volume | 16 |
| WOSCitedRecordID | wos000780173200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1994-0424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062904 issn: 1994-0424 databaseCode: RKB dateStart: 20070101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1994-0424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062904 issn: 1994-0424 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1994-0424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062904 issn: 1994-0424 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1994-0424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062904 issn: 1994-0424 databaseCode: BFMQW dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1994-0424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062904 issn: 1994-0424 databaseCode: PCBAR dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1994-0424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062904 issn: 1994-0424 databaseCode: PATMY dateStart: 20070101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1994-0424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062904 issn: 1994-0424 databaseCode: BENPR dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1994-0424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062904 issn: 1994-0424 databaseCode: PIMPY dateStart: 20070101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagIMGFnwJioVRWhYBLaJzYSXzcVq1aiV2tCkjlZNnOhF2pzaJNdqXeeAfekCdhJk4XFglxgFt-JpbjzzMe2-NvGHtpJehcWxGlNqPVKtT0ooAigkpWTpQ2LtOQbCIfj4vzcz35JdUXxYQFeuDQcPtaeVdlFpS3IBMvC6dF4lOALLaygJLOraNW0zydcrgFG5wlOg77yUR8iz5HIPVBb0Xutz4SRL0nFPaQJNkYjzra_rVxvjml2MjfTHQ37hzf_4caP2D3emeTD8MnD9kNqLfZnT7v-fRqmw1G6DPPF93SOn_FDy9m6MB2d4_YcgwtD-EefF5xNChRMwVov3_9ZtvLeUN8BMCJbmIRDkc0fEE8sNDwZnZJWcGg5C0NhXTkko9mOFLWwId1i7qFFfpZIl_hhD3whV89Zh-Pjz4cnkR9kobIqlS2kS5j5fAqS6XLHYikVFbFrnTeK53ZNMsqF5c4L9JKQSGg9FaWeeWLRDuV5D59wrbqeQ1PGU8TW1VSaIAildbawleZdtpLhyXkmR2wt9dQGd8zmFMijQuDMxnC1rTeiMwQtoawHbA36w--BPKOP4seEJBrMWLd7h4gsqZH1vwN2QHbo55jiFejpsCdz3bZNOb0_ZkZ5h27ntZqwF73QtUca-9tfw4C24CouDYkdzYkUfH9xus97KAbNT4ZvjP0LJa0oRbrlcAyrvuv6a1TYyiqURc5gvbsf_z2c3aXmpD22ITYYVvtYgkv2G2_amfNYpfdOjgaT852u9UOvJucjiafdjt1_QHGF0HV |
| linkProvider | Copernicus Gesellschaft |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLa2Dmm8cBkgCgOsidtLWJw4TvyAUBlMrdZWFQxpPBnbcdZKWzKStKhv_Af-Bz-KX4JPLp2KBG974C2XE8s6OTf7HH8HoaeSGh5ySRxfMtitspoeRSZyTEITRWLpxn7dbCIcj6OTEz7ZQD_bszBQVtnaxMpQx5mGPfJ9qMSy62OfsjcXXx3oGgXZ1baFRi0WR2b5zS7ZiteDd_b_PvO8w_fHB32n6SrgyMCnpcNjN1D2ivlUhcoQLw5k4KpYaR1wJn3GEuXGNpDnQWAiYmItaRwmOvK4CrxQ-3bcTbRFrbBHHbQ1GYwmn1vbzzzu1nlsANylHq3BhGyURPdL7RCA_COBlUzPW_ODVbuAlVPYnEJN5h-uofJ3hzf_N07dQjeayBr3alW4jTZMuoO2mybv0-UO6o7sAiHLqzwCfo4PzmY2Wq_u7qD52JS4rm3BWYKt9XSKqTHlr-8_ZHmeFQC-YDBga-T1SZAC5wB6awpczM6hBZqJcQl-H86X4tHMhgWpwb20tHywE7ocES-k1fmqJHl5F326Eo7cQ500S819hH1PJgkl3JjIp1LKSCeMK66psiOETHbRq1Y-hG7g2qFryJmwyzYQKFFqQZgAgRIgUF30cvXBRY1U8nfStyBwKzKAGK8eZPmpaCyW4IFWCZMm0NJQT9NIceJp3xjmShqZuIv2QFwFgIikUKV0KudFIQYfP4heWEEJch500YuGKMns7LVsDn1YHgDu2Brl7hqltXJ67fWe1Yq1Gfd7QwHPXArZQ5cviB2j1QjRmOJCXKrDg3-_foK2-8ejoRgOxkcP0XVgFKQNCdlFnTKfm0foml6UsyJ_3Gg9Rl-uWn1-A-B5loo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF71gYALjwIiUGBV8bqY-LFrew8IhZaoUZsoglYqp2W9XjeRWrvYTlBu_Af-DT-HX8KMH6mCBLceuPkxXq3G89qd2W8Iea6YEYFQjuUpH3erQNPD0ISWSVgSObGyY69uNhGMRuHJiRivkZ_tWRgsq2xtYmWo40zjHnkXK7Fgfewxv5s0ZRHjvf67i68WdpDCTGvbTqMWkQOz-AbLt-LtYA_-9QvX7X842t23mg4DluIeKy0R2zyCK99jURAZx4254nYUR1pz4SvP95PIjiGoF5yb0DGxViwOEh26IuJuoD0Yd51sIkYcGIXNce9o-Ln1A74r7DqnjeC7zGU1sBBETKxbastB-D-Hg5S67opPrFoHLB3E-gTrM_9wE5Xv69_-n7l2h9xqIm7aq1XkLlkz6Ra50TR_nyy2SGcIC4csr_IL9CXdPZtCFF_d3SOzkSlpXfNCs4SCVbWKiTHlr-8_VHmeFQjKYChibuT1CZGC5giGawpaTM-xNZqJaYnxAJ47pcMphAupob20BD7AhC5HpHMFtqAqVV7cJ8dXwpEHZCPNUvOQUM9VScIcYUzoMaVUqBNfREKzCEYIfNUhb1pZkbqBccduImcSlnMoXLLU0vElCpdE4eqQ18sPLmoEk7-TvkfhW5Ih9Hj1IMtPZWPJpOA6SnxluFaGuZqFkXBc7Rnj24qFJu6QHRRdieAiKQrcqZoVhRx8-ih7QQUxKATvkFcNUZLB7LVqDoMADxCPbIVye4USrJ9eeb0DGrIy4_3eocRnNsOsoi3mDozRaodsTHQhL1Xj0b9fPyPXQWfk4WB08JjcRD5hNtFxtslGmc_ME3JNz8tpkT9tDAAlX65ae34DdDKfQA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Net+effect+of+ice-sheet%E2%80%93atmosphere+interactions+reduces+simulated+transient+Miocene+Antarctic+ice-sheet+variability&rft.jtitle=The+cryosphere&rft.au=L.+B.+Stap&rft.au=C.+J.+Berends&rft.au=M.+D.+W.+Scherrenberg&rft.au=R.+S.+W.+van+de+Wal&rft.date=2022-04-11&rft.pub=Copernicus+Publications&rft.issn=1994-0416&rft.eissn=1994-0424&rft.volume=16&rft.spage=1315&rft.epage=1332&rft_id=info:doi/10.5194%2Ftc-16-1315-2022&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_95cbf6ae5cae42c48b912c3ee60a48ed |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-0424&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-0424&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-0424&client=summon |