Net effect of ice-sheet–atmosphere interactions reduces simulated transient Miocene Antarctic ice-sheet variability

Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So far, however, realistic simulations of the Miocene AIS have been limited to equilibrium states under different CO2 levels and orbital settings....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The cryosphere Ročník 16; číslo 4; s. 1315 - 1332
Hlavní autoři: Stap, Lennert B., Berends, Constantijn J., Scherrenberg, Meike D. W., van de Wal, Roderik S. W., Gasson, Edward G. W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Katlenburg-Lindau Copernicus GmbH 11.04.2022
European Geosciences Union
Copernicus Publications
Témata:
ISSN:1994-0424, 1994-0416, 1994-0424, 1994-0416
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So far, however, realistic simulations of the Miocene AIS have been limited to equilibrium states under different CO2 levels and orbital settings. Earlier transient simulations lacked ice-sheet–atmosphere interactions and used a present-day rather than Miocene Antarctic bedrock topography. Here, we quantify the effect of ice-sheet–atmosphere interactions, running the ice-sheet model IMAU-ICE using climate forcing from Miocene simulations by the general circulation model GENESIS. Utilising a recently developed matrix interpolation method enables us to interpolate the climate forcing based on CO2 levels (between 280 and 840 ppm), as well as varying ice-sheet configurations (between no ice and a large East Antarctic Ice Sheet). We furthermore implement recent reconstructions of Miocene Antarctic bedrock topography. We find that the positive albedo–temperature feedback, partly compensated for by a negative feedback between ice volume and precipitation, increases hysteresis in the relation between CO2 and ice volume. Together, these ice-sheet–atmosphere interactions decrease the amplitude of Miocene AIS variability in idealised transient simulations. Forced by quasi-orbital 40 kyr forcing CO2 cycles, the ice volume variability reduces by 21 % when ice-sheet–atmosphere interactions are included compared to when forcing variability is only based on CO2 changes. Thereby, these interactions also diminish the contribution of AIS variability to benthic δ18O fluctuations. Evolving bedrock topography during the early and mid-Miocene also reduces ice volume variability by 10 % under equal 40 kyr cycles of atmosphere and ocean forcing.
AbstractList Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So far, however, realistic simulations of the Miocene AIS have been limited to equilibrium states under different CO2 levels and orbital settings. Earlier transient simulations lacked ice-sheet–atmosphere interactions and used a present-day rather than Miocene Antarctic bedrock topography. Here, we quantify the effect of ice-sheet–atmosphere interactions, running the ice-sheet model IMAU-ICE using climate forcing from Miocene simulations by the general circulation model GENESIS. Utilising a recently developed matrix interpolation method enables us to interpolate the climate forcing based on CO2 levels (between 280 and 840 ppm), as well as varying ice-sheet configurations (between no ice and a large East Antarctic Ice Sheet). We furthermore implement recent reconstructions of Miocene Antarctic bedrock topography. We find that the positive albedo–temperature feedback, partly compensated for by a negative feedback between ice volume and precipitation, increases hysteresis in the relation between CO2 and ice volume. Together, these ice-sheet–atmosphere interactions decrease the amplitude of Miocene AIS variability in idealised transient simulations. Forced by quasi-orbital 40 kyr forcing CO2 cycles, the ice volume variability reduces by 21 % when ice-sheet–atmosphere interactions are included compared to when forcing variability is only based on CO2 changes. Thereby, these interactions also diminish the contribution of AIS variability to benthic δ18O fluctuations. Evolving bedrock topography during the early and mid-Miocene also reduces ice volume variability by 10 % under equal 40 kyr cycles of atmosphere and ocean forcing.
Benthic δ18 O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So far, however, realistic simulations of the Miocene AIS have been limited to equilibrium states under different CO 2 levels and orbital settings. Earlier transient simulations lacked ice-sheet–atmosphere interactions and used a present-day rather than Miocene Antarctic bedrock topography. Here, we quantify the effect of ice-sheet–atmosphere interactions, running the ice-sheet model IMAU-ICE using climate forcing from Miocene simulations by the general circulation model GENESIS. Utilising a recently developed matrix interpolation method enables us to interpolate the climate forcing based on CO 2 levels (between 280 and 840 ppm), as well as varying ice-sheet configurations (between no ice and a large East Antarctic Ice Sheet). We furthermore implement recent reconstructions of Miocene Antarctic bedrock topography. We find that the positive albedo–temperature feedback, partly compensated for by a negative feedback between ice volume and precipitation, increases hysteresis in the relation between CO 2 and ice volume. Together, these ice-sheet–atmosphere interactions decrease the amplitude of Miocene AIS variability in idealised transient simulations. Forced by quasi-orbital 40 kyr forcing CO 2 cycles, the ice volume variability reduces by 21 % when ice-sheet–atmosphere interactions are included compared to when forcing variability is only based on CO 2 changes. Thereby, these interactions also diminish the contribution of AIS variability to benthic δ18 O fluctuations. Evolving bedrock topography during the early and mid-Miocene also reduces ice volume variability by 10 % under equal 40 kyr cycles of atmosphere and ocean forcing.
Benthic [delta].sup.18 O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So far, however, realistic simulations of the Miocene AIS have been limited to equilibrium states under different CO.sub.2 levels and orbital settings. Earlier transient simulations lacked ice-sheet-atmosphere interactions and used a present-day rather than Miocene Antarctic bedrock topography. Here, we quantify the effect of ice-sheet-atmosphere interactions, running the ice-sheet model IMAU-ICE using climate forcing from Miocene simulations by the general circulation model GENESIS. Utilising a recently developed matrix interpolation method enables us to interpolate the climate forcing based on CO.sub.2 levels (between 280 and 840 ppm), as well as varying ice-sheet configurations (between no ice and a large East Antarctic Ice Sheet). We furthermore implement recent reconstructions of Miocene Antarctic bedrock topography. We find that the positive albedo-temperature feedback, partly compensated for by a negative feedback between ice volume and precipitation, increases hysteresis in the relation between CO.sub.2 and ice volume. Together, these ice-sheet-atmosphere interactions decrease the amplitude of Miocene AIS variability in idealised transient simulations. Forced by quasi-orbital 40 kyr forcing CO.sub.2 cycles, the ice volume variability reduces by 21 % when ice-sheet-atmosphere interactions are included compared to when forcing variability is only based on CO.sub.2 changes. Thereby, these interactions also diminish the contribution of AIS variability to benthic [delta].sup.18 O fluctuations. Evolving bedrock topography during the early and mid-Miocene also reduces ice volume variability by 10 % under equal 40 kyr cycles of atmosphere and ocean forcing.
Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So far, however, realistic simulations of the Miocene AIS have been limited to equilibrium states under different CO2 levels and orbital settings. Earlier transient simulations lacked ice-sheet–atmosphere interactions and used a present-day rather than Miocene Antarctic bedrock topography. Here, we quantify the effect of ice-sheet–atmosphere interactions, running the ice-sheet model IMAU-ICE using climate forcing from Miocene simulations by the general circulation model GENESIS. Utilising a recently developed matrix interpolation method enables us to interpolate the climate forcing based on CO2 levels (between 280 and 840 ppm), as well as varying ice-sheet configurations (between no ice and a large East Antarctic Ice Sheet). We furthermore implement recent reconstructions of Miocene Antarctic bedrock topography. We find that the positive albedo–temperature feedback, partly compensated for by a negative feedback between ice volume and precipitation, increases hysteresis in the relation between CO2 and ice volume. Together, these ice-sheet–atmosphere interactions decrease the amplitude of Miocene AIS variability in idealised transient simulations. Forced by quasi-orbital 40 kyr forcing CO2 cycles, the ice volume variability reduces by 21 % when ice-sheet–atmosphere interactions are included compared to when forcing variability is only based on CO2 changes. Thereby, these interactions also diminish the contribution of AIS variability to benthic δ18O fluctuations. Evolving bedrock topography during the early and mid-Miocene also reduces ice volume variability by 10 % under equal 40 kyr cycles of atmosphere and ocean forcing.
Audience Academic
Author Berends, Constantijn J.
Stap, Lennert B.
Scherrenberg, Meike D. W.
Gasson, Edward G. W.
van de Wal, Roderik S. W.
Author_xml – sequence: 1
  givenname: Lennert B.
  orcidid: 0000-0002-2108-3533
  surname: Stap
  fullname: Stap, Lennert B.
– sequence: 2
  givenname: Constantijn J.
  orcidid: 0000-0002-2961-0350
  surname: Berends
  fullname: Berends, Constantijn J.
– sequence: 3
  givenname: Meike D. W.
  orcidid: 0000-0002-9708-1008
  surname: Scherrenberg
  fullname: Scherrenberg, Meike D. W.
– sequence: 4
  givenname: Roderik S. W.
  surname: van de Wal
  fullname: van de Wal, Roderik S. W.
– sequence: 5
  givenname: Edward G. W.
  surname: Gasson
  fullname: Gasson, Edward G. W.
BackLink https://hal.science/hal-04665709$$DView record in HAL
BookMark eNp1kstu1DAUhiNUJNrCmm0kVl2ktR3biZejCuhIU5C4rK0T-2TGo0w82E5Fd7wDb8iT4HS4DQJ5Yevo-3-f21lxMvoRi-I5JZeCKn6VTEVlRWsqKkYYe1ScUqV4RTjjJ3-8nxRnMW4JkUwRflpMbzCV2PdoUun70hms4gYxffvyFdLOx_0GA5ZuTBjAJOfHWAa0k8FYRrebBkhoyxRgjA7HVN46b3DEcjEmCJk3vx3LOwgOOje4dP-0eNzDEPHZj_u8-Pjq5Yfrm2r19vXyerGqQNQ8VcoS0eWXrHnXdEiZFSBIZztjhJJQS9l3xAreKiGwpWgNcNv0pmWqE6wx9XmxPPhaD1u9D24H4V57cPoh4MNaQ8hZDqiVMF0vAYUB5MzwtlOUmRpREuAt2ux1cfDawHBkdbNY6TlGuJSiIeqOZvbFgd0H_2nCmPTWT2HMpWomc7ptMxf1i1pDTsCNvc-NNDsXjV40hNA8MyUydfkPKh-LO2fyDvQux48EF0eCzCT8nNYwxaiX798ds-LAmuBjDNhr4xLMc86fuEFToufl0sloKvW8XHperqy7-kv3syP_U3wH6u7TqQ
CitedBy_id crossref_primary_10_5194_cp_20_1919_2024
crossref_primary_10_1038_s41467_023_43106_4
crossref_primary_10_5194_cp_19_399_2023
crossref_primary_10_5194_cp_20_257_2024
Cites_doi 10.1051/0004-6361:20041335
10.5194/tc-9-881-2015
10.1175/JPO-D-18-0131.1
10.1175/1520-0442(1999)012<2169:TDROTG>2.0.CO;2
10.5194/gmd-3-13-2010
10.1029/2020PA003900
10.1029/2008GC002046
10.5194/cp-14-1275-2018
10.3189/172756404781814708
10.1038/nature06588
10.1038/s41561-018-0284-4
10.1038/ncomms15681
10.1130/B35814.1
10.3189/172756400781819941
10.1016/S1463-5003(02)00019-7
10.1029/2020GC009122
10.1029/2020GL090003
10.1038/s41586-021-04148-0
10.1038/s41558-017-0020-x
10.5194/tc-13-1043-2019
10.1029/2008JF001179
10.1016/j.gloplacha.2011.11.003
10.1038/ngeo1783
10.5194/cp-17-361-2021
10.1016/j.epsl.2021.116908
10.1002/essoar.10505870.1
10.5194/cp-10-451-2014
10.5194/cp-5-633-2009
10.1002/palo.20015
10.1002/2013PA002538
10.5194/cp-7-869-2011
10.5194/cp-15-1603-2019
10.1007/s00382-012-1562-2
10.1016/j.epsl.2004.04.011
10.1038/nature01290
10.1073/pnas.1615440114
10.1016/S0031-0182(03)00394-8
10.5194/tc-14-3935-2020
10.1007/s10584-010-9830-9
10.1029/2001JD900232
10.1002/2014PA002653
10.1016/S0277-3791(01)00082-8
10.1016/j.gloplacha.2012.03.003
10.1016/j.gloplacha.2004.09.011
10.1175/1520-0442(1997)010<0871:GAAMBF>2.0.CO;2
10.1038/nature12374
10.1016/j.palaeo.2019.109346
10.3189/172756410791392736
10.1029/2008PA001704
10.1038/nature07809
10.1029/2007GC001736
10.1038/ncomms3999
10.1038/s41467-017-02609-7
10.1002/2016PA002958
10.1130/G40228.1
10.1073/pnas.1516030113
10.1029/JC090iC01p01100
10.1038/s41598-018-29718-7
10.1029/2006JF000664
10.1073/pnas.0708588105
10.1016/j.palaeo.2011.05.028
10.1038/s41561-019-0510-8
10.1038/s41467-018-07206-w
10.1016/j.palaeo.2019.109374
10.1029/2020PA004037
10.5194/cp-14-1015-2018
10.1038/s41586-020-2727-5
10.1038/nature07867
10.1256/qj.04.176
10.1016/j.palaeo.2005.07.027
10.1016/j.gloplacha.2013.09.012
10.5194/tc-5-727-2011
10.1016/j.epsl.2012.06.007
10.5194/cp-13-1243-2017
10.1126/sciadv.abf5326
10.1029/2020PA003971
10.1002/2013PA002593
10.1038/s41561-021-00745-w
10.3189/S0260305500013586
10.1038/316591a0
10.1017/jog.2020.67
10.5194/tc-5-715-2011
10.5194/gmd-11-4657-2018
10.1029/2020PA003927
10.1016/S1040-6182(02)00023-X
10.1073/pnas.1516130113
10.1029/2019GL082163
10.5194/tc-12-1969-2018
ContentType Journal Article
Copyright COPYRIGHT 2022 Copernicus GmbH
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: COPYRIGHT 2022 Copernicus GmbH
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H95
H96
HCIFZ
KL.
L.G
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
1XC
VOOES
DOA
DOI 10.5194/tc-16-1315-2022
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Continental Europe Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList


CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Meteorology & Climatology
Environmental Sciences
EISSN 1994-0424
1994-0416
EndPage 1332
ExternalDocumentID oai_doaj_org_article_95cbf6ae5cae42c48b912c3ee60a48ed
oai:HAL:hal-04665709v1
A700119995
10_5194_tc_16_1315_2022
GroupedDBID 29F
2WC
5GY
5VS
7XC
8CJ
8FE
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BFMQW
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
ESX
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEA
IEP
IGS
ISR
ITC
K6-
KQ8
LK5
M7R
MM-
M~E
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
TUS
ZBA
~02
7QH
7TG
7TN
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H95
H96
KL.
L.G
PKEHL
PQEST
PQUKI
1XC
VOOES
ID FETCH-LOGICAL-a534t-9d05b534634b7be12d5a50bdbcc596a366fb0d548955e81edca4d7fc829b527c3
IEDL.DBID RKB
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000780173200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1994-0424
1994-0416
IngestDate Tue Oct 14 19:02:44 EDT 2025
Sun Nov 30 03:08:01 EST 2025
Mon Jun 30 14:46:17 EDT 2025
Tue Nov 11 10:26:39 EST 2025
Tue Nov 04 17:53:51 EST 2025
Thu Nov 13 14:48:29 EST 2025
Sat Nov 29 06:35:00 EST 2025
Tue Nov 18 20:50:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a534t-9d05b534634b7be12d5a50bdbcc596a366fb0d548955e81edca4d7fc829b527c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2108-3533
0000-0002-2961-0350
0000-0002-9708-1008
OpenAccessLink https://doaj.org/article/95cbf6ae5cae42c48b912c3ee60a48ed
PQID 2648987346
PQPubID 105732
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_95cbf6ae5cae42c48b912c3ee60a48ed
hal_primary_oai_HAL_hal_04665709v1
proquest_journals_2648987346
gale_infotracmisc_A700119995
gale_infotracacademiconefile_A700119995
gale_incontextgauss_ISR_A700119995
crossref_citationtrail_10_5194_tc_16_1315_2022
crossref_primary_10_5194_tc_16_1315_2022
PublicationCentury 2000
PublicationDate 2022-04-11
PublicationDateYYYYMMDD 2022-04-11
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-11
  day: 11
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle The cryosphere
PublicationYear 2022
Publisher Copernicus GmbH
European Geosciences Union
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: European Geosciences Union
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref93
ref92
ref51
ref50
ref91
ref90
ref46
ref45
ref89
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref41
  doi: 10.1051/0004-6361:20041335
– ident: ref17
  doi: 10.5194/tc-9-881-2015
– ident: ref42
  doi: 10.1175/JPO-D-18-0131.1
– ident: ref35
  doi: 10.1175/1520-0442(1999)012<2169:TDROTG>2.0.CO;2
– ident: ref68
  doi: 10.5194/gmd-3-13-2010
– ident: ref81
– ident: ref84
  doi: 10.1029/2020PA003900
– ident: ref30
  doi: 10.1029/2008GC002046
– ident: ref28
  doi: 10.5194/cp-14-1275-2018
– ident: ref55
  doi: 10.3189/172756404781814708
– ident: ref93
  doi: 10.1038/nature06588
– ident: ref45
  doi: 10.1038/s41561-018-0284-4
– ident: ref82
  doi: 10.1038/ncomms15681
– ident: ref61
  doi: 10.1130/B35814.1
– ident: ref36
  doi: 10.3189/172756400781819941
– ident: ref3
  doi: 10.1016/S1463-5003(02)00019-7
– ident: ref31
  doi: 10.1029/2020GC009122
– ident: ref58
  doi: 10.1029/2020GL090003
– ident: ref50
  doi: 10.1038/s41586-021-04148-0
– ident: ref70
  doi: 10.1038/s41558-017-0020-x
– ident: ref60
  doi: 10.5194/tc-13-1043-2019
– ident: ref11
  doi: 10.1029/2008JF001179
– ident: ref29
  doi: 10.1016/j.gloplacha.2011.11.003
– ident: ref85
  doi: 10.1038/ngeo1783
– ident: ref7
  doi: 10.5194/cp-17-361-2021
– ident: ref27
  doi: 10.1016/j.epsl.2021.116908
– ident: ref12
  doi: 10.1002/essoar.10505870.1
– ident: ref24
  doi: 10.5194/cp-10-451-2014
– ident: ref39
  doi: 10.5194/cp-5-633-2009
– ident: ref2
  doi: 10.1002/palo.20015
– ident: ref33
  doi: 10.1002/2013PA002538
– ident: ref46
  doi: 10.5194/cp-7-869-2011
– ident: ref6
  doi: 10.5194/cp-15-1603-2019
– ident: ref15
  doi: 10.1007/s00382-012-1562-2
– ident: ref75
  doi: 10.1016/j.epsl.2004.04.011
– ident: ref18
  doi: 10.1038/nature01290
– ident: ref47
  doi: 10.1073/pnas.1615440114
– ident: ref63
  doi: 10.1016/S0031-0182(03)00394-8
– ident: ref20
  doi: 10.5194/tc-14-3935-2020
– ident: ref62
  doi: 10.1007/s10584-010-9830-9
– ident: ref71
  doi: 10.1029/2001JD900232
– ident: ref26
  doi: 10.1002/2014PA002653
– ident: ref34
  doi: 10.1016/S0277-3791(01)00082-8
– ident: ref19
  doi: 10.1016/j.gloplacha.2012.03.003
– ident: ref64
  doi: 10.1016/j.gloplacha.2004.09.011
– ident: ref89
  doi: 10.1175/1520-0442(1997)010<0871:GAAMBF>2.0.CO;2
– ident: ref1
  doi: 10.1038/nature12374
– ident: ref57
  doi: 10.1016/j.palaeo.2019.109346
– ident: ref14
  doi: 10.3189/172756410791392736
– ident: ref40
  doi: 10.1029/2008PA001704
– ident: ref65
  doi: 10.1038/nature07809
– ident: ref76
  doi: 10.1029/2007GC001736
– ident: ref16
  doi: 10.1038/ncomms3999
– ident: ref73
  doi: 10.1038/s41467-017-02609-7
– ident: ref77
  doi: 10.1002/2016PA002958
– ident: ref87
  doi: 10.1130/G40228.1
– ident: ref44
  doi: 10.1073/pnas.1516030113
– ident: ref48
  doi: 10.1029/JC090iC01p01100
– ident: ref13
  doi: 10.1038/s41598-018-29718-7
– ident: ref74
  doi: 10.1029/2006JF000664
– ident: ref32
– ident: ref37
  doi: 10.1073/pnas.0708588105
– ident: ref91
  doi: 10.1016/j.palaeo.2011.05.028
– ident: ref53
  doi: 10.1038/s41561-019-0510-8
– ident: ref88
  doi: 10.1038/s41467-018-07206-w
– ident: ref66
  doi: 10.1016/j.palaeo.2019.109374
– ident: ref83
  doi: 10.1029/2020PA004037
– ident: ref8
  doi: 10.5194/cp-14-1015-2018
– ident: ref23
  doi: 10.1038/s41586-020-2727-5
– ident: ref4
– ident: ref54
  doi: 10.1038/nature07867
– ident: ref90
  doi: 10.1256/qj.04.176
– ident: ref59
  doi: 10.1016/j.palaeo.2005.07.027
– ident: ref67
  doi: 10.1016/j.gloplacha.2013.09.012
– ident: ref51
  doi: 10.5194/tc-5-727-2011
– ident: ref22
  doi: 10.1016/j.epsl.2012.06.007
– ident: ref78
  doi: 10.5194/cp-13-1243-2017
– ident: ref21
– ident: ref72
  doi: 10.1126/sciadv.abf5326
– ident: ref80
  doi: 10.1029/2020PA003971
– ident: ref38
  doi: 10.1002/2013PA002593
– ident: ref10
  doi: 10.1038/s41561-021-00745-w
– ident: ref43
  doi: 10.3189/S0260305500013586
– ident: ref49
  doi: 10.1038/316591a0
– ident: ref86
  doi: 10.1017/jog.2020.67
– ident: ref92
  doi: 10.5194/tc-5-715-2011
– ident: ref5
  doi: 10.5194/gmd-11-4657-2018
– ident: ref56
– ident: ref52
  doi: 10.1029/2020PA003927
– ident: ref9
  doi: 10.1016/S1040-6182(02)00023-X
– ident: ref25
  doi: 10.1073/pnas.1516130113
– ident: ref79
  doi: 10.1029/2019GL082163
– ident: ref69
  doi: 10.5194/tc-12-1969-2018
SSID ssj0062904
Score 2.3241947
Snippet Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So...
Benthic [delta].sup.18 O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet...
Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So...
Benthic δ18O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So...
Benthic δ18 O levels vary strongly during the warmer-than-modern early and mid-Miocene (23 to 14 Myr ago), suggesting a dynamic Antarctic ice sheet (AIS). So...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1315
SubjectTerms Albedo
Antarctic ice sheet
Approximation
Atmosphere
Bedrock
Benthos
Carbon dioxide
Climate
Climate models
Cycles
Environmental Sciences
Equilibrium
Experiments
Feedback
General circulation models
Glaciation
Ice
Ice sheet models
Ice sheets
Ice shelves
Ice volume
Interpolation
Miocene
Negative feedback
Ocean temperature
Precipitation (Meteorology)
Sheet modelling
Simulation
Topography
Variability
Water temperature
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fi9QwEA96CPoieiqunhIOUV_qNW2SJo_r4XGCt4h_4N5Ckk7dhbuutN2Fe_M7-A39JM603dUVxBff-mcappnJZCaZ_IaxZ16CLawXSe41rVbhSDcGTAKVrIIofVrmQ7GJYjYz5-f2_W-lvignbIAHHjruyKoYKu1BRQ8yi9IEK7KYA-jUSwMlWV_0ejbB1GCDdWbTYT-ZgG_R5xhAfdBbkUddTARB7wmFGpJlO_NRD9u_Nc7X55Qb-YeJ7uedkzvs9ugw8unA6F12Dep9dnOsXT6_2meTM_R7l02_PM6f8-OLBTqh_d09tppBx4eUDb6sOBqFpJ0DdD--fffd5bIlTAHgBBnRDAccWt4Qliu0vF1cUmUvKHlH0xkdm-RnC5ztauDTusPxgQz9apGvMegeML-v7rPPJ28-HZ8mY6GFxKtcdoktUxXwSucyFAFEViqv0lCGGJXVPte6CmmJsY1VCoyAMnpZFlU0mQ0qK2L-gO3VyxoeMp5nvqqksAAml957Eyttg40yYAuF9hP2atPdLo4o5FQM48JhNELycV10QjuSjyP5TNjL7QdfBwCOv5O-JvltyQg5u3-A-uRGfXL_0qcJOyTpO8LGqCn55otfta17-_GDmxY9Qp61asJejETVErmPfjzLgH1AcFo7lAc7lDh4487rQ1SyHY5Pp-8cPUslbYqldi2wjY0OutHCtI4yE60pUGiP_sdvP2a3qAtpn0yIA7bXNSt4wm7Edbdom6f94PoJEF8qlg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELboFgku_BQQCwVZFQIuoXFiO_EJbatWRaKrqoDUm2U7k-5KbVKSbKXeeAfekCfBk3i3WiS4cEviiWV5fjwej78h5I3hoDJlWJQaidEqr-l5DnkEJS8tK0xcpEOxiWw6zc_O1EkIuLUhrXJpE3tDXdQOY-S7mInl98cplx-vvkdYNQpPV0MJjQ2yiUhlfEQ29w6mJ6dLWywTFQ_nygiAyxM-gPt4r4Xvdi5iCMHHhJeUJFlbl3r4_pWR3phhjuQfprpffw4f_u_IH5EHwfOkk0FUHpM7UG2Re6EI-uxmi4yPvQNdN32cnb6l-xdz7832b0_IYgodHXI_aF1Sb12idgbQ_frx03SXdYvgBEARe6IZbkq0tEFQWGhpO7_EEmFQ0A7XRbx_SY_nftmsgE6qziuaH9Btj_Ta794H8PCbp-Tb4cHX_aMoVGyIjEh5F6kiFtY_yZTbzAJLCmFEbAvrnFDSpFKWNi78JkkJATmDwhleZKXLE2VFkrn0GRlVdQXPCU0TU5acKYA85caY3JVSWeW49T1k0ozJhyW_tAtw5lhV40L7bQ0yWHdOM6mRwRoZPCbvVz9cDUgefyfdQwFYkSEEd_-hbs510GithLOlNCCcAZ44nlvFEpcCyNjwHIox2UHx0QiyUWEWz7lZtK3-9OVUT7Ieak8pMSbvAlFZ-9E7Ey5F-DlAXK41yu01Sm8F3FrzjpfStREfTT5r_BZzPF2L1TXzfSwlVAdT1epb8Xzx7-aX5D5ODh6lMbZNRl2zgFfkrrvu5m3zOmjeb3aEOJI
  priority: 102
  providerName: ProQuest
Title Net effect of ice-sheet–atmosphere interactions reduces simulated transient Miocene Antarctic ice-sheet variability
URI https://www.proquest.com/docview/2648987346
https://hal.science/hal-04665709
https://doaj.org/article/95cbf6ae5cae42c48b912c3ee60a48ed
Volume 16
WOSCitedRecordID wos000780173200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1994-0424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062904
  issn: 1994-0424
  databaseCode: RKB
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1994-0424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062904
  issn: 1994-0424
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1994-0424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062904
  issn: 1994-0424
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1994-0424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062904
  issn: 1994-0424
  databaseCode: BFMQW
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1994-0424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062904
  issn: 1994-0424
  databaseCode: PCBAR
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1994-0424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062904
  issn: 1994-0424
  databaseCode: PATMY
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1994-0424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062904
  issn: 1994-0424
  databaseCode: BENPR
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1994-0424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062904
  issn: 1994-0424
  databaseCode: PIMPY
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagIMGFnwJioVRWhYBLaJzYSXzcVq1aiV2tCkjlZNnOhF2pzaJNdqXeeAfekCdhJk4XFglxgFt-JpbjzzMe2-NvGHtpJehcWxGlNqPVKtT0ooAigkpWTpQ2LtOQbCIfj4vzcz35JdUXxYQFeuDQcPtaeVdlFpS3IBMvC6dF4lOALLaygJLOraNW0zydcrgFG5wlOg77yUR8iz5HIPVBb0Xutz4SRL0nFPaQJNkYjzra_rVxvjml2MjfTHQ37hzf_4caP2D3emeTD8MnD9kNqLfZnT7v-fRqmw1G6DPPF93SOn_FDy9m6MB2d4_YcgwtD-EefF5xNChRMwVov3_9ZtvLeUN8BMCJbmIRDkc0fEE8sNDwZnZJWcGg5C0NhXTkko9mOFLWwId1i7qFFfpZIl_hhD3whV89Zh-Pjz4cnkR9kobIqlS2kS5j5fAqS6XLHYikVFbFrnTeK53ZNMsqF5c4L9JKQSGg9FaWeeWLRDuV5D59wrbqeQ1PGU8TW1VSaIAildbawleZdtpLhyXkmR2wt9dQGd8zmFMijQuDMxnC1rTeiMwQtoawHbA36w--BPKOP4seEJBrMWLd7h4gsqZH1vwN2QHbo55jiFejpsCdz3bZNOb0_ZkZ5h27ntZqwF73QtUca-9tfw4C24CouDYkdzYkUfH9xus97KAbNT4ZvjP0LJa0oRbrlcAyrvuv6a1TYyiqURc5gvbsf_z2c3aXmpD22ITYYVvtYgkv2G2_amfNYpfdOjgaT852u9UOvJucjiafdjt1_QHGF0HV
linkProvider Copernicus Gesellschaft
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLa2Dmm8cBkgCgOsidtLWJw4TvyAUBlMrdZWFQxpPBnbcdZKWzKStKhv_Af-Bz-KX4JPLp2KBG974C2XE8s6OTf7HH8HoaeSGh5ySRxfMtitspoeRSZyTEITRWLpxn7dbCIcj6OTEz7ZQD_bszBQVtnaxMpQx5mGPfJ9qMSy62OfsjcXXx3oGgXZ1baFRi0WR2b5zS7ZiteDd_b_PvO8w_fHB32n6SrgyMCnpcNjN1D2ivlUhcoQLw5k4KpYaR1wJn3GEuXGNpDnQWAiYmItaRwmOvK4CrxQ-3bcTbRFrbBHHbQ1GYwmn1vbzzzu1nlsANylHq3BhGyURPdL7RCA_COBlUzPW_ODVbuAlVPYnEJN5h-uofJ3hzf_N07dQjeayBr3alW4jTZMuoO2mybv0-UO6o7sAiHLqzwCfo4PzmY2Wq_u7qD52JS4rm3BWYKt9XSKqTHlr-8_ZHmeFQC-YDBga-T1SZAC5wB6awpczM6hBZqJcQl-H86X4tHMhgWpwb20tHywE7ocES-k1fmqJHl5F326Eo7cQ500S819hH1PJgkl3JjIp1LKSCeMK66psiOETHbRq1Y-hG7g2qFryJmwyzYQKFFqQZgAgRIgUF30cvXBRY1U8nfStyBwKzKAGK8eZPmpaCyW4IFWCZMm0NJQT9NIceJp3xjmShqZuIv2QFwFgIikUKV0KudFIQYfP4heWEEJch500YuGKMns7LVsDn1YHgDu2Brl7hqltXJ67fWe1Yq1Gfd7QwHPXArZQ5cviB2j1QjRmOJCXKrDg3-_foK2-8ejoRgOxkcP0XVgFKQNCdlFnTKfm0foml6UsyJ_3Gg9Rl-uWn1-A-B5loo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF71gYALjwIiUGBV8bqY-LFrew8IhZaoUZsoglYqp2W9XjeRWrvYTlBu_Af-DT-HX8KMH6mCBLceuPkxXq3G89qd2W8Iea6YEYFQjuUpH3erQNPD0ISWSVgSObGyY69uNhGMRuHJiRivkZ_tWRgsq2xtYmWo40zjHnkXK7Fgfewxv5s0ZRHjvf67i68WdpDCTGvbTqMWkQOz-AbLt-LtYA_-9QvX7X842t23mg4DluIeKy0R2zyCK99jURAZx4254nYUR1pz4SvP95PIjiGoF5yb0DGxViwOEh26IuJuoD0Yd51sIkYcGIXNce9o-Ln1A74r7DqnjeC7zGU1sBBETKxbastB-D-Hg5S67opPrFoHLB3E-gTrM_9wE5Xv69_-n7l2h9xqIm7aq1XkLlkz6Ra50TR_nyy2SGcIC4csr_IL9CXdPZtCFF_d3SOzkSlpXfNCs4SCVbWKiTHlr-8_VHmeFQjKYChibuT1CZGC5giGawpaTM-xNZqJaYnxAJ47pcMphAupob20BD7AhC5HpHMFtqAqVV7cJ8dXwpEHZCPNUvOQUM9VScIcYUzoMaVUqBNfREKzCEYIfNUhb1pZkbqBccduImcSlnMoXLLU0vElCpdE4eqQ18sPLmoEk7-TvkfhW5Ih9Hj1IMtPZWPJpOA6SnxluFaGuZqFkXBc7Rnj24qFJu6QHRRdieAiKQrcqZoVhRx8-ih7QQUxKATvkFcNUZLB7LVqDoMADxCPbIVye4USrJ9eeb0DGrIy4_3eocRnNsOsoi3mDozRaodsTHQhL1Xj0b9fPyPXQWfk4WB08JjcRD5hNtFxtslGmc_ME3JNz8tpkT9tDAAlX65ae34DdDKfQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Net+effect+of+ice-sheet%E2%80%93atmosphere+interactions+reduces+simulated+transient+Miocene+Antarctic+ice-sheet+variability&rft.jtitle=The+cryosphere&rft.au=L.+B.+Stap&rft.au=C.+J.+Berends&rft.au=M.+D.+W.+Scherrenberg&rft.au=R.+S.+W.+van+de+Wal&rft.date=2022-04-11&rft.pub=Copernicus+Publications&rft.issn=1994-0416&rft.eissn=1994-0424&rft.volume=16&rft.spage=1315&rft.epage=1332&rft_id=info:doi/10.5194%2Ftc-16-1315-2022&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_95cbf6ae5cae42c48b912c3ee60a48ed
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-0424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-0424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-0424&client=summon