Multiscale and Multitopic Sparse Representation for Multisensor Infrared Image Superresolution

Methods based on sparse coding have been successfully used in single-image superresolution (SR) reconstruction. However, the traditional sparse representation-based SR image reconstruction for infrared (IR) images usually suffers from three problems. First, IR images always lack detailed information...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors Jg. 2016; H. 2016; S. 1 - 14
Hauptverfasser: Yan, Binyu, Gan, Zhongliang, Liu, Kai, Yang, Xiaomin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 01.01.2016
John Wiley & Sons, Inc
Schlagworte:
ISSN:1687-725X, 1687-7268
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Methods based on sparse coding have been successfully used in single-image superresolution (SR) reconstruction. However, the traditional sparse representation-based SR image reconstruction for infrared (IR) images usually suffers from three problems. First, IR images always lack detailed information. Second, a traditional sparse dictionary is learned from patches with a fixed size, which may not capture the exact information of the images and may ignore the fact that images naturally come at different scales in many cases. Finally, traditional sparse dictionary learning methods aim at learning a universal and overcomplete dictionary. However, many different local structural patterns exist. One dictionary is inadequate in capturing all of the different structures. We propose a novel IR image SR method to overcome these problems. First, we combine the information from multisensors to improve the resolution of the IR image. Then, we use multiscale patches to represent the image in a more efficient manner. Finally, we partition the natural images into documents and group such documents to determine the inherent topics and to learn the sparse dictionary of each topic. Extensive experiments validate that using the proposed method yields better results in terms of quantitation and visual perception than many state-of-the-art algorithms.
AbstractList Methods based on sparse coding have been successfully used in single-image superresolution (SR) reconstruction. However, the traditional sparse representation-based SR image reconstruction for infrared (IR) images usually suffers from three problems. First, IR images always lack detailed information. Second, a traditional sparse dictionary is learned from patches with a fixed size, which may not capture the exact information of the images and may ignore the fact that images naturally come at different scales in many cases. Finally, traditional sparse dictionary learning methods aim at learning a universal and overcomplete dictionary. However, many different local structural patterns exist. One dictionary is inadequate in capturing all of the different structures. We propose a novel IR image SR method to overcome these problems. First, we combine the information from multisensors to improve the resolution of the IR image. Then, we use multiscale patches to represent the image in a more efficient manner. Finally, we partition the natural images into documents and group such documents to determine the inherent topics and to learn the sparse dictionary of each topic. Extensive experiments validate that using the proposed method yields better results in terms of quantitation and visual perception than many state-of-the-art algorithms.
Author Yan, Binyu
Liu, Kai
Yang, Xiaomin
Gan, Zhongliang
Author_xml – sequence: 1
  fullname: Yan, Binyu
– sequence: 2
  fullname: Gan, Zhongliang
– sequence: 3
  fullname: Liu, Kai
– sequence: 4
  fullname: Yang, Xiaomin
BookMark eNqF0EtLxDAQB_AgCq6Pm2cpeBF0NWmePYr4WFAEV8GTJU2mWukmNWkRv71ZKwqCeMpk-M2Q_DfQqvMOENoh-IgQzo9zTMSxxFRQVqygCRFKTmUu1Op3zR_W0UaMLxgLKimdoMfroe2baHQLmXY2-7z2vmtMNu90iJDdQhcggut133iX1T6MKLViqmeuDjqAzWYL_QTZfOggJO_bYcm30Fqt2wjbX-cmuj8_uzu9nF7dXMxOT66mmlPaT02OqeWgKxBFXilbS8tokZMqZzUpjDWyYlgrI1QBgkBlLCeMWVC8qik1im6i_XFvF_zrALEvF-lT0LbagR9iSaRUmBeK5Ynu_aIvfgguvS4ppjinjMik8lGZ4GMMUJemGRPog27akuByGXm5jLz8ijwNHf4a6kKz0OH9L34w8ufGWf3W_Kd3Rw3JQK1_NCGYS0E_AFXmm98
CitedBy_id crossref_primary_10_1155_2016_6370845
crossref_primary_10_1155_2020_6265708
Cites_doi 10.1007/978-3-642-37431-9_22
10.1137/070697653
10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
10.1109/tip.2010.2050625
10.1023/a:1007617005950
10.1016/j.optcom.2012.08.101
10.1109/TIP.2004.840683
10.1109/38.988747
10.1109/tip.2012.2208977
10.1109/83.784434
10.1109/JPROC.2010.2040551
10.1016/j.imavis.2011.02.001
10.1016/j.sigpro.2009.09.002
10.1109/tip.2006.888334
10.1109/TIP.2004.834669
10.1109/tsmcc.2005.848171
10.1007/978-3-642-27413-8_47
10.1109/jstsp.2010.2048606
10.1109/TSP.2006.881199
ContentType Journal Article
Copyright Copyright © 2016 Xiaomin Yang et al.
Copyright © 2016 Xiaomin Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright_xml – notice: Copyright © 2016 Xiaomin Yang et al.
– notice: Copyright © 2016 Xiaomin Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
3V.
7SP
7U5
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
D1I
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
KB.
L6V
L7M
M0N
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1155/2016/7036349
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-7268
Editor Anisetti, Marco
Editor_xml – sequence: 1
  givenname: Marco
  surname: Anisetti
  fullname: Anisetti, Marco
EndPage 14
ExternalDocumentID 3893826961
10_1155_2016_7036349
1110576
GroupedDBID .4S
.DC
0R~
188
24P
29L
2UF
2WC
4.4
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAKPC
AAMMB
ABJCF
ABUWG
ACCMX
ACGFO
ACIWK
ADBBV
ADJCN
ADMLS
AEFGJ
AEGXH
AENEX
AFKRA
AGXDD
AHFXO
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C1A
CCPQU
CS3
CWDGH
D1I
DWQXO
E3Z
EBS
EDO
EJD
GNUQQ
H13
HCIFZ
IAO
IEA
IGS
IL9
IPNFZ
ITC
K6V
K7-
KB.
KQ8
L6V
M7S
OK1
OVT
P62
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
Q2X
RHU
RIG
RNS
TR2
TUS
UGNYK
UNMZH
3V.
AAJEY
AINHJ
CAHYU
CNMHZ
GROUPED_DOAJ
M0N
M~E
RHW
RHX
AAYXX
AFFHD
ALUQN
CITATION
7SP
7U5
7XB
8AL
8FD
8FK
JQ2
L7M
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-a533t-c203d5eabe692b8df7d43921b24f19cdc7b40a8c689e61ebcd5144de85bf33c83
IEDL.DBID M7S
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368282300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-725X
IngestDate Sun Nov 09 13:44:04 EST 2025
Fri Jul 25 12:16:44 EDT 2025
Sat Nov 29 06:02:41 EST 2025
Tue Nov 18 22:38:34 EST 2025
Sun Jun 02 18:53:12 EDT 2024
Thu Sep 25 15:16:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2016
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a533t-c203d5eabe692b8df7d43921b24f19cdc7b40a8c689e61ebcd5144de85bf33c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1748553417?pq-origsite=%requestingapplication%
PQID 1748553417
PQPubID 237780
PageCount 14
ParticipantIDs proquest_miscellaneous_1778059842
proquest_journals_1748553417
crossref_citationtrail_10_1155_2016_7036349
crossref_primary_10_1155_2016_7036349
hindawi_primary_10_1155_2016_7036349
emarefa_primary_1110576
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: New York
PublicationTitle Journal of sensors
PublicationYear 2016
Publisher Hindawi Publishing Corporation
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi Publishing Corporation
– name: John Wiley & Sons, Inc
References (9) 2005; 35
Sun J. Sun J. Xu Z. Shum H.-Y. Image super-resolution using gradient profile prior Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition (CVPR '08) June 2008 1 8 10.1109/cvpr.2008.4587659 2-s2.0-51949110386
Mairal J. Bach F. Ponce J. Sapiro G. Zisserman A. Supervised dictionary learning Proceedings of the 22nd Annual Conference on Neural Information Processing Systems (NIPS '08) December 2008 1033 1040 2-s2.0-84858761801
Monaci G. Vanderqheynst P. Learning structured dictionaries for image representation 4 Proceedings of the IEEE International Conference on Image Processing (ICIP '04) October 2004 Singapore IEEE 2351 2354 10.1109/ICIP.2004.1421572
(1) 1999; 8
(17) 2010; 98
(6) 2004; 13
(2) 2005; 14
(4) 2007; 16
(16) 2010; 19
(21) 2013; 287
Purkait P. Chanda B. Image upscaling using multiple dictionaries of natural image patches Computer Vision—ACCV 2012: 11th Asian Conference on Computer Vision, Daejeon, Korea, November 5–9, 2012, Revised Selected Papers, Part III 2013 7726 Berlin, Germany Springer 284 295 Lecture Notes in Computer Science 10.1007/978-3-642-37431-9_22
(13) 2008; 7
Chang H. Yeung D.-Y. Xiong Y. Super-resolution through neighbor embedding 1 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’04) June-July 2004 Washington, DC, USA 275 282 10.1109/CVPR.2004.1315043
(23) 1990; 41
Morris N. J. W. Avidan S. Matusik W. Pfister H. Statistics of infrared images Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR' 07) June 2007 1 7 10.1109/cvpr.2007.383003 2-s2.0-35148848710
(5) 2010; 90
Zeyde R. Elad M. Protter M. On single image scale-up using sparse-representations Curves and Surfaces 2012 6920 711 730 Lecture Notes in Computer Science 10.1007/978-3-642-27413-8_47
(7) 2002; 22
(11) 2006; 54
(10) 2011; 29
(18) 2012; 21
(3) 1984; 1
(8) 2011; 5
(19) 2001; 42
11
22
23
13
14
25
15
26
16
27
17
28
18
1
2
8
9
10
21
References_xml – volume: 8
  start-page: 1221
  issue: 9
  year: 1999
  end-page: 1228
  ident: 1
  article-title: Demosaicing: image reconstruction from color CCD samples
– volume: 16
  start-page: 479
  issue: 2
  year: 2007
  end-page: 490
  ident: 4
  article-title: A MAP approach for joint motion estimation, segmentation, and super resolution
– volume: 90
  start-page: 848
  issue: 3
  year: 2010
  end-page: 859
  ident: 5
  article-title: A super-resolution reconstruction algorithm for surveillance images
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  end-page: 4322
  ident: 11
  article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
– reference: Zeyde R. Elad M. Protter M. On single image scale-up using sparse-representations Curves and Surfaces 2012 6920 711 730 Lecture Notes in Computer Science 10.1007/978-3-642-27413-8_47
– volume: 5
  start-page: 230
  issue: 2
  year: 2011
  end-page: 239
  ident: 8
  article-title: Partially supervised neighbor embedding for example-based image super-resolution
– reference: Purkait P. Chanda B. Image upscaling using multiple dictionaries of natural image patches Computer Vision—ACCV 2012: 11th Asian Conference on Computer Vision, Daejeon, Korea, November 5–9, 2012, Revised Selected Papers, Part III 2013 7726 Berlin, Germany Springer 284 295 Lecture Notes in Computer Science 10.1007/978-3-642-37431-9_22
– volume: 19
  start-page: 2861
  issue: 11
  year: 2010
  end-page: 2873
  ident: 16
  article-title: Image super-resolution via sparse representation
– reference: Sun J. Sun J. Xu Z. Shum H.-Y. Image super-resolution using gradient profile prior Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition (CVPR '08) June 2008 1 8 10.1109/cvpr.2008.4587659 2-s2.0-51949110386
– reference: Mairal J. Bach F. Ponce J. Sapiro G. Zisserman A. Supervised dictionary learning Proceedings of the 22nd Annual Conference on Neural Information Processing Systems (NIPS '08) December 2008 1033 1040 2-s2.0-84858761801
– volume: 13
  start-page: 1327
  issue: 10
  year: 2004
  end-page: 1344
  ident: 6
  article-title: Fast and robust multiframe super resolution
– reference: Chang H. Yeung D.-Y. Xiong Y. Super-resolution through neighbor embedding 1 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’04) June-July 2004 Washington, DC, USA 275 282 10.1109/CVPR.2004.1315043
– volume: 98
  start-page: 1045
  issue: 6
  year: 2010
  end-page: 1057
  ident: 17
  article-title: Dictionaries for sparse representation modeling
– volume: 1
  start-page: 317
  year: 1984
  end-page: 339
  ident: 3
  article-title: Multi-frame image restoration and registration
– reference: Monaci G. Vanderqheynst P. Learning structured dictionaries for image representation 4 Proceedings of the IEEE International Conference on Image Processing (ICIP '04) October 2004 Singapore IEEE 2351 2354 10.1109/ICIP.2004.1421572
– volume: 41
  start-page: 391
  issue: 6
  year: 1990
  end-page: 407
  ident: 23
  article-title: Indexing by latent semantic analysis
– volume: 42
  start-page: 177
  issue: 1-2
  year: 2001
  end-page: 196
  ident: 19
  article-title: Unsupervised learning by probabilistic latent semantic analysis
– reference: Morris N. J. W. Avidan S. Matusik W. Pfister H. Statistics of infrared images Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR' 07) June 2007 1 7 10.1109/cvpr.2007.383003 2-s2.0-35148848710
– volume: 35
  start-page: 425
  issue: 3
  year: 2005
  end-page: 434
  ident: 9
  article-title: Hallucinating face by eigentransformation
– volume: 29
  start-page: 394
  issue: 6
  year: 2011
  end-page: 406
  ident: 10
  article-title: Learning-based super resolution using kernel partial least squares
– volume: 22
  start-page: 56
  issue: 2
  year: 2002
  end-page: 65
  ident: 7
  article-title: Example-based super-resolution
– volume: 7
  start-page: 214
  issue: 1
  year: 2008
  end-page: 241
  ident: 13
  article-title: Learning multiscale sparse representations for image and video restoration
– volume: 287
  start-page: 63
  issue: 1
  year: 2013
  end-page: 72
  ident: 21
  article-title: A multifocus image fusion method by using hidden Markov model
– volume: 21
  start-page: 4544
  issue: 11
  year: 2012
  end-page: 4556
  ident: 18
  article-title: Single image super-resolution with non-local means and steering kernel regression
– volume: 14
  start-page: 370
  issue: 3
  year: 2005
  end-page: 379
  ident: 2
  article-title: Demosaicing by successive approximation
– ident: 28
  doi: 10.1007/978-3-642-37431-9_22
– ident: 18
  doi: 10.1137/070697653
– ident: 27
  doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
– ident: 16
  doi: 10.1109/tip.2010.2050625
– ident: 26
  doi: 10.1023/a:1007617005950
– ident: 25
  doi: 10.1016/j.optcom.2012.08.101
– ident: 2
  doi: 10.1109/TIP.2004.840683
– ident: 11
  doi: 10.1109/38.988747
– ident: 23
  doi: 10.1109/tip.2012.2208977
– ident: 1
  doi: 10.1109/83.784434
– ident: 21
  doi: 10.1109/JPROC.2010.2040551
– ident: 15
  doi: 10.1016/j.imavis.2011.02.001
– ident: 9
  doi: 10.1016/j.sigpro.2009.09.002
– volume: 1
  start-page: 317
  year: 1984
  ident: 3
  publication-title: Advances in Computer Vision and Image Processing
– ident: 8
  doi: 10.1109/tip.2006.888334
– ident: 10
  doi: 10.1109/TIP.2004.834669
– ident: 14
  doi: 10.1109/tsmcc.2005.848171
– ident: 22
  doi: 10.1007/978-3-642-27413-8_47
– ident: 13
  doi: 10.1109/jstsp.2010.2048606
– ident: 17
  doi: 10.1109/TSP.2006.881199
SSID ssj0063733
Score 2.0129492
Snippet Methods based on sparse coding have been successfully used in single-image superresolution (SR) reconstruction. However, the traditional sparse...
SourceID proquest
crossref
hindawi
emarefa
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Dictionaries
Image reconstruction
Infrared
Learning
Representations
State of the art
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEB5UFPRBvF0vIuiTFLdpkyaPIoqCiHjAPlly4oJ2l11X_76TNuuJ6FvaTluYyWS-SeYA2Mu4sIxLk1CvdNi6cYkUzifeI_aWps21revMXhSXl6LTkVexSNLw5xE-Wjt0z1N-WNeJyuUkTAoWIreuzzrjBZdnRd0xPuWoLwVlnXF8-7d3v1ieGfekcIDmaOYhOL-v3R-LcW1hThdgPkJDctTIchEmXLUEc58KBi7DfZ0vO0S-OqIqS5r02V6_a8hNH11UR67ryNaYUFQRhKQNEd4a4vi88oMQck7On3AhITejvgvdOeL8W4G705Pb47MkdkhIFMK058TQdmaZU9pxSbWwvrAIMGiqae5TaawpdN5WwnAhHU-dNhbxUW6dYNpnmRHZKkxVvcqtA2FSePQlC-418spTrTmnNDVetaViLmvBwZh7pYnlw0MXi8eydiMYKwOvy8jrFuy_U_ebshm_0K1FQXyQpaH1MG_BXhTMHx_YGkutjNo3LNHLEoyhfS5asPv-GPUmHIaoyvVGgSZ0c5Aipxv_-9MmzIbLZvtlC6aeByO3DdPmBUU42Kln5BtCRtmj
  priority: 102
  providerName: Hindawi Publishing
Title Multiscale and Multitopic Sparse Representation for Multisensor Infrared Image Superresolution
URI https://search.emarefa.net/detail/BIM-1110576
https://dx.doi.org/10.1155/2016/7036349
https://www.proquest.com/docview/1748553417
https://www.proquest.com/docview/1778059842
Volume 2016
WOSCitedRecordID wos000368282300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1687-7268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063733
  issn: 1687-725X
  databaseCode: K7-
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1687-7268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063733
  issn: 1687-725X
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1687-7268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063733
  issn: 1687-725X
  databaseCode: KB.
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-7268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063733
  issn: 1687-725X
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1687-7268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063733
  issn: 1687-725X
  databaseCode: P5Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1687-7268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063733
  issn: 1687-725X
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1687-7268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063733
  issn: 1687-725X
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-7268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063733
  issn: 1687-725X
  databaseCode: 24P
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_tg0nwML6hMKogjScU1ji1Yz9NDG1aBVRRC1LhYZE_tUlbGtoV_n3OjrNNQoMHXiwnPjmRzz7fnc_3A9jNGTeUCZ0SJ5V33dhUcOtS51D3FnrAlAl5Zj8V4zGfzUQZHW7LGFbZycQgqM1cex_5HmrOnFKUucV-8yP1qFH-dDVCaKzDps-SkIXQvWkniVleBCj5jOFCKgiddYHvlKLNn7G9kHzKZ9G8sSVt2QuJFdyntk69Vfzr7A8pHbaeo_v_-9MPYDsqncn7dpY8hDVbP4J7N1IRPoaTcBN3iRyziaxN0l7MnTdnOpk2aPzaZBJiZuNVpTpBZbclwldLrI9qt_DB7MnoAkVUMl011uN-xJn9BL4eHX75cJxG7IVUogJ4mWoyyA21UlkmiOLGFQZVF5IpMnSZ0EYXajiQXDMuLMus0gY1r6GxnCqX55rnT2Gjntf2OSRUcIdWasGcwsF2RCnGCMm0kwMhqc178LYb_krHxOQeH-O8CgYKpZVnVhWZ1YM3V9RNm5DjFrpnkZPXZJkHNWY92I2c_UcHOx1Pq7iul9U1Q3vw-qoZV6Q_ZpG1na88jceJEHxIXvy9i5dw13-wdejswMblYmVfwR39E1m36MPmweG4nPRh_WOR-vLgXT9MbyxL-h3by9Hn8hs-TY5nvwF_gAGY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RAFD5BlCAP3i-rqGMCT6RhO-3cHowxKmGz68YIJvtE6dwCiXTrLivxT_EbPTNtgcSoTzz41rQn07TnO7eZcwHYyLi0jCuTUF_qsHXjEiWdT7xH31uZPtc29pkdifFYTibq8xKcd7UwIa2y04lRUdupCXvk2-g5S8ZQ54q39fckTI0Kp6vdCI0GFkP38wxDtvmbwQfk7yalOx_33-8m7VSBpETX5jQxtJ9Z5krtuKJaWi8sGmWaapr7VBlrhM77pTRcKsdTp41FnyK3TjLts8zIDNe9ATfzTIogV0ORdJqfZyKOrk85Cq6gbNIl2jO2TUNSWWx2Fbp2XjGBK-6kxAu0iytHIQo_O_7NKkRTt3P3f_tJ9-BO61STd40U3IclVz2AtSutFh_CQaw0niMiHSkrS5rC42l9bMhejcG9I19iTnBbilURdOYbIrw1x-tB5WchWZ8MTlAFk71F7cJck1ZyH8HXa_nAx7BcTSv3FAhT0mMULrjXyFxPteac0tT4sq9K5rIebHXsLkzbeD3M__hWxACMsSKAo2jB0YPNC-q6aTjyB7onLXIuydIwtJn3YKNF0j8WWO8wVLR6a15cAqgHry8eo8YJx0hl5aaLQBPmYCiZ02d_X-IVrO7ufxoVo8F4-Bxuh5c3m1frsHw6W7gXcMv8QDbOXkYxInB43ZD8BQaWWSs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UakUfvF9Wq47QPknYzWRnMvMgItbFpWVZrMLiQ-NcsWCzcbdr8a_56zwzmbQFUZ_64FtIDhOS853bzLkAbBVcWMalyahXOmzduEwK5zPv0feWZsC1jX1m98rJRMxmcroGP7tamJBW2enEqKjt3IQ98j56zoIx1Lll36e0iOnO6FXzLQsTpMJJazdOo4XIrvtxguHb8uV4B3m9Teno7Yc377I0YSBT6OYcZ4YOCsuc0o5LqoX1pUUDTXNNhz6XxppSDwdKGC6k47nTxqJ_MbROMO2LwogC170El0uMMUM64ZR96qwAL8o4xj7nKMQlZbMu6Z6xPg0JZrHxVejgec4cbrgjhRdoIze-hIj85PA3CxHN3ujm__zDbsGN5GyT16103IY1V9-B6-daMN6Fg1iBvESkOqJqS9qC5HlzaMh-g0G_I-9jrnAq0aoJOvktEd5a4vW49ouQxE_GR6iayf6qcWHeSZLoe_DxQj7wPqzX89o9BMKk8Bidl9xrZLSnWnNOaW68GkjFXNGDFx3rK5Masoe5IF-rGJgxVgWgVAkoPdg-pW7aRiR_oHuQUHRGlodhzrwHWwlV_1hgs8NTlfTZsjoDUw-enz5GTRSOl1Tt5qtAE-ZjSDGkj_6-xDO4ikis9saT3cdwLby73dPahPXjxco9gSvmO3Jx8TRKFIHPF43IX5byYk8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+and+Multitopic+Sparse+Representation+for+Multisensor+Infrared+Image+Superresolution&rft.jtitle=Journal+of+sensors&rft.au=Yang%2C+Xiaomin&rft.au=Liu%2C+Kai&rft.au=Gan%2C+Zhongliang&rft.au=Yan%2C+Binyu&rft.date=2016-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-725X&rft.eissn=1687-7268&rft.volume=2016&rft_id=info:doi/10.1155%2F2016%2F7036349&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3893826961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-725X&client=summon