Elucidating the Vibrational Fingerprint of the Flexible Metal-Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach

In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal-organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unp...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of physical chemistry. C Ročník 122; číslo 5; s. 2734
Hlavní autori: Hoffman, Alexander E J, Vanduyfhuys, Louis, Nevjestić, Irena, Wieme, Jelle, Rogge, Sven M J, Depauw, Hannes, Van Der Voort, Pascal, Vrielinck, Henk, Van Speybroeck, Veronique
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 08.02.2018
ISSN:1932-7447
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal-organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition.
AbstractList In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal-organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition.
In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal-organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition.In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal-organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition.
Author Depauw, Hannes
Wieme, Jelle
Vrielinck, Henk
Nevjestić, Irena
Van Der Voort, Pascal
Rogge, Sven M J
Hoffman, Alexander E J
Vanduyfhuys, Louis
Van Speybroeck, Veronique
Author_xml – sequence: 1
  givenname: Alexander E J
  surname: Hoffman
  fullname: Hoffman, Alexander E J
  organization: Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Ghent, Belgium
– sequence: 2
  givenname: Louis
  surname: Vanduyfhuys
  fullname: Vanduyfhuys, Louis
  organization: Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
– sequence: 3
  givenname: Irena
  surname: Nevjestić
  fullname: Nevjestić, Irena
  organization: Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Ghent, Belgium
– sequence: 4
  givenname: Jelle
  surname: Wieme
  fullname: Wieme, Jelle
  organization: Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
– sequence: 5
  givenname: Sven M J
  surname: Rogge
  fullname: Rogge, Sven M J
  organization: Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
– sequence: 6
  givenname: Hannes
  surname: Depauw
  fullname: Depauw, Hannes
  organization: Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
– sequence: 7
  givenname: Pascal
  surname: Van Der Voort
  fullname: Van Der Voort, Pascal
  organization: Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
– sequence: 8
  givenname: Henk
  surname: Vrielinck
  fullname: Vrielinck, Henk
  organization: Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Ghent, Belgium
– sequence: 9
  givenname: Veronique
  surname: Van Speybroeck
  fullname: Van Speybroeck, Veronique
  organization: Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29449906$$D View this record in MEDLINE/PubMed
BookMark eNo1UMtuwjAQ9IGqPNp7T5WP9BBY2wGTI0LQIoG4lF4jx9mAqeOkTqLSr-gvN7T0tNrZ2RnN9EnHFQ4JeWAwYsDZWOlqdCq1HsmEMRCsQ3osEjyQYSi7pF9VJ4CJACZuSZdHYRhFMO2R76VttElVbdyB1kekbybx7VY4ZemqBdGX3riaFtnveWXxbBKLdIu1ssHOH5Qzmq68yvGz8O90u94EEzGc2ye6ry6iii6KPDEOU7o8l-hNjq59Hbdo2dT_VvOy9IXSxztykylb4f11Dsh-tXxdvASb3fN6Md8EaiJ4HUg51QCY4SViigoEl1qLVGQsyZiQIWYaMRIZoIqEBCVmchpq0IkIhY4UH5Dhn25r-9FgVce5qTRaqxwWTRVzAAEhMJi11McrtUlyTOO2j1z5r_i_RP4D83Z2nw
CitedBy_id crossref_primary_10_1016_j_ccr_2018_06_011
crossref_primary_10_1016_j_electacta_2020_136609
crossref_primary_10_1039_C9RA09968A
crossref_primary_10_1515_zkri_2018_2154
crossref_primary_10_1016_j_ccr_2023_215402
crossref_primary_10_1016_j_cej_2025_168842
crossref_primary_10_1039_D2SC02405E
crossref_primary_10_1088_1361_648X_ad43a4
crossref_primary_10_1021_jacs_0c05882
crossref_primary_10_1039_D1SE00771H
crossref_primary_10_1107_S1600577524000584
crossref_primary_10_1007_s10904_024_03283_1
crossref_primary_10_1016_j_jcis_2020_05_105
crossref_primary_10_1021_jacs_0c03175
crossref_primary_10_1002_cphc_202500081
crossref_primary_10_1021_jacs_9b07484
crossref_primary_10_1063_5_0144344
crossref_primary_10_1038_s41467_024_54989_2
crossref_primary_10_1021_acs_inorgchem_5c02921
crossref_primary_10_1039_D5TA04373E
crossref_primary_10_1016_j_matdes_2023_112021
crossref_primary_10_1002_cssc_202401454
crossref_primary_10_1021_acsomega_5c02296
crossref_primary_10_1016_j_carbon_2021_01_146
crossref_primary_10_1002_ente_201900157
crossref_primary_10_1016_j_fuel_2024_131095
crossref_primary_10_1002_adma_202412005
crossref_primary_10_1016_j_apt_2022_103488
crossref_primary_10_1021_jacs_0c09499
crossref_primary_10_1002_adfm_202308130
crossref_primary_10_1016_j_cplett_2022_140272
crossref_primary_10_1002_chem_202500130
crossref_primary_10_1021_jacs_8b05890
crossref_primary_10_1002_ijch_201800084
crossref_primary_10_1002_cctc_202401538
crossref_primary_10_1016_j_micromeso_2020_110329
crossref_primary_10_1016_j_micromeso_2023_112747
crossref_primary_10_1038_s41467_025_60027_6
crossref_primary_10_3390_nano14050388
crossref_primary_10_1002_jcc_25858
crossref_primary_10_1016_j_jece_2021_106601
crossref_primary_10_1021_acsanm_5c03036
crossref_primary_10_1016_j_matchemphys_2024_130237
crossref_primary_10_1016_j_matpr_2021_06_287
crossref_primary_10_1515_zkri_2018_2152
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acs.jpcc.7b11031
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
ExternalDocumentID 29449906
Genre Journal Article
GroupedDBID .K2
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH9
IHE
JG~
NPM
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a532t-776c00efe1932dea0327cc3d3f1bf1374efcee93f0ea9370a38764c0cb343c9a2
IEDL.DBID 7X8
ISICitedReferencesCount 84
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424955400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-7447
IngestDate Sun Nov 09 12:56:23 EST 2025
Thu Jan 02 22:59:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a532t-776c00efe1932dea0327cc3d3f1bf1374efcee93f0ea9370a38764c0cb343c9a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5808359
PMID 29449906
PQID 2003040108
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2003040108
pubmed_primary_29449906
PublicationCentury 2000
PublicationDate 2018-02-08
PublicationDateYYYYMMDD 2018-02-08
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J Phys Chem C Nanomater Interfaces
PublicationYear 2018
SSID ssj0053013
Score 2.5303905
Snippet In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal-organic framework...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2734
Title Elucidating the Vibrational Fingerprint of the Flexible Metal-Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach
URI https://www.ncbi.nlm.nih.gov/pubmed/29449906
https://www.proquest.com/docview/2003040108
Volume 122
WOSCitedRecordID wos000424955400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UCnrx_agvVvCgh9g0u-luTlJKg4ItPaj0VjaTXamUtJrWv-FfdnaTqBdBkEAuS0iYncx889j5CLkAg5dMuBcqwzzOk6YXSYWhSmI5rgykMgVHNiH6fTkcRoMy4ZaXbZWVTXSGOp2CzZE3AlfEw-hB3sxePcsaZaurJYXGMqkxhDJWq8Xwq4oQovKyoqqMKJJzUZYp0a01FOTXLzOAa5E0LdPB7wDTOZp487-fuEU2SohJ24VObJMlne2QtU7F7LZLPrqTBYztuYbsmSIApE82Zi6SgjR2eT6b7pvTqXHLsR2amUw07WmE6l5xfBNoXPV10d7dvReyy_bkiroWBKoo2hmMuXVKuz8oBBoFh0T1qnY5z3yPPMbdh86tVxIzeCpkwRwReQt8XxttJZtq5bNAALCUmWZimkxwbdD3Rsz4WiH88RVDm8vBh4RxBpEK9slKNs30IaEt5muNAb0RuBaEUgUsahkZMBBCpErXyXkl6xFKyVYzVKani3z0Le06OSg2bDQrJnSMgohjJOe3jv7w9DFZRxAkXSe2PCE1g7-9PiWr8D4f529nTqPw3h_0PgF_hNiw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+Vibrational+Fingerprint+of+the+Flexible+Metal-Organic+Framework+MIL-53%28Al%29+Using+a+Combined+Experimental%2FComputational+Approach&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Hoffman%2C+Alexander+E+J&rft.au=Vanduyfhuys%2C+Louis&rft.au=Nevjesti%C4%87%2C+Irena&rft.au=Wieme%2C+Jelle&rft.date=2018-02-08&rft.issn=1932-7447&rft.volume=122&rft.issue=5&rft.spage=2734&rft_id=info:doi/10.1021%2Facs.jpcc.7b11031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon