Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production
The renewability, biocompatibility, and mechanical properties of cellulose nanocrystals (CNCs) have made them an attractive material for numerous composite, biomedical, and rheological applications. However, for CNCs to shift from a laboratory curiosity to commercial applications, researchers must t...
Uloženo v:
| Vydáno v: | Langmuir Ročník 33; číslo 7; s. 1583 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
21.02.2017
|
| ISSN: | 1520-5827, 1520-5827 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The renewability, biocompatibility, and mechanical properties of cellulose nanocrystals (CNCs) have made them an attractive material for numerous composite, biomedical, and rheological applications. However, for CNCs to shift from a laboratory curiosity to commercial applications, researchers must transition from CNCs extracted on the bench scale to material produced on an industrial scale. There are a number of companies currently producing kilogram to ton per day quantities of sulfuric acid-hydrolyzed CNCs as well as other nanocelluloses, as described herein. With the recent intensification of industrially produced CNCs and the variety of cellulose sources, hydrolysis methods, and purification procedures, the characterization of these materials becomes critical. This has further been justified by the past two decades of research that demonstrate that the CNC stability and behavior are highly dependent on the surface chemistry, surface charge density, and particle size. This work outlines key test methods that should be employed to characterize these properties to ensure a "known" starting material and consistent performance. Of the sulfuric acid-extracted CNCs examined, industrially produced material compared well with laboratory-made CNCs, exhibiting similar charge density, colloidal and thermal stability, crystallinity, morphology, and self-assembly behavior. In addition, it was observed that further purification of CNCs using Soxhlet extraction in ethanol had minimal impact on the nanoparticle properties and is unlikely to be necessary for many applications. Overall, the current standing of industrially produced CNCs is positive, suggesting that the evolution to commercial-scale applications will not be hindered by CNC production. |
|---|---|
| AbstractList | The renewability, biocompatibility, and mechanical properties of cellulose nanocrystals (CNCs) have made them an attractive material for numerous composite, biomedical, and rheological applications. However, for CNCs to shift from a laboratory curiosity to commercial applications, researchers must transition from CNCs extracted on the bench scale to material produced on an industrial scale. There are a number of companies currently producing kilogram to ton per day quantities of sulfuric acid-hydrolyzed CNCs as well as other nanocelluloses, as described herein. With the recent intensification of industrially produced CNCs and the variety of cellulose sources, hydrolysis methods, and purification procedures, the characterization of these materials becomes critical. This has further been justified by the past two decades of research that demonstrate that the CNC stability and behavior are highly dependent on the surface chemistry, surface charge density, and particle size. This work outlines key test methods that should be employed to characterize these properties to ensure a "known" starting material and consistent performance. Of the sulfuric acid-extracted CNCs examined, industrially produced material compared well with laboratory-made CNCs, exhibiting similar charge density, colloidal and thermal stability, crystallinity, morphology, and self-assembly behavior. In addition, it was observed that further purification of CNCs using Soxhlet extraction in ethanol had minimal impact on the nanoparticle properties and is unlikely to be necessary for many applications. Overall, the current standing of industrially produced CNCs is positive, suggesting that the evolution to commercial-scale applications will not be hindered by CNC production. The renewability, biocompatibility, and mechanical properties of cellulose nanocrystals (CNCs) have made them an attractive material for numerous composite, biomedical, and rheological applications. However, for CNCs to shift from a laboratory curiosity to commercial applications, researchers must transition from CNCs extracted on the bench scale to material produced on an industrial scale. There are a number of companies currently producing kilogram to ton per day quantities of sulfuric acid-hydrolyzed CNCs as well as other nanocelluloses, as described herein. With the recent intensification of industrially produced CNCs and the variety of cellulose sources, hydrolysis methods, and purification procedures, the characterization of these materials becomes critical. This has further been justified by the past two decades of research that demonstrate that the CNC stability and behavior are highly dependent on the surface chemistry, surface charge density, and particle size. This work outlines key test methods that should be employed to characterize these properties to ensure a "known" starting material and consistent performance. Of the sulfuric acid-extracted CNCs examined, industrially produced material compared well with laboratory-made CNCs, exhibiting similar charge density, colloidal and thermal stability, crystallinity, morphology, and self-assembly behavior. In addition, it was observed that further purification of CNCs using Soxhlet extraction in ethanol had minimal impact on the nanoparticle properties and is unlikely to be necessary for many applications. Overall, the current standing of industrially produced CNCs is positive, suggesting that the evolution to commercial-scale applications will not be hindered by CNC production.The renewability, biocompatibility, and mechanical properties of cellulose nanocrystals (CNCs) have made them an attractive material for numerous composite, biomedical, and rheological applications. However, for CNCs to shift from a laboratory curiosity to commercial applications, researchers must transition from CNCs extracted on the bench scale to material produced on an industrial scale. There are a number of companies currently producing kilogram to ton per day quantities of sulfuric acid-hydrolyzed CNCs as well as other nanocelluloses, as described herein. With the recent intensification of industrially produced CNCs and the variety of cellulose sources, hydrolysis methods, and purification procedures, the characterization of these materials becomes critical. This has further been justified by the past two decades of research that demonstrate that the CNC stability and behavior are highly dependent on the surface chemistry, surface charge density, and particle size. This work outlines key test methods that should be employed to characterize these properties to ensure a "known" starting material and consistent performance. Of the sulfuric acid-extracted CNCs examined, industrially produced material compared well with laboratory-made CNCs, exhibiting similar charge density, colloidal and thermal stability, crystallinity, morphology, and self-assembly behavior. In addition, it was observed that further purification of CNCs using Soxhlet extraction in ethanol had minimal impact on the nanoparticle properties and is unlikely to be necessary for many applications. Overall, the current standing of industrially produced CNCs is positive, suggesting that the evolution to commercial-scale applications will not be hindered by CNC production. |
| Author | Cranston, Emily D Villalobos, Marco Reid, Michael S |
| Author_xml | – sequence: 1 givenname: Michael S surname: Reid fullname: Reid, Michael S organization: Department of Chemical Engineering, McMaster University Hamilton , Ontario, Canada L8S 4L8 – sequence: 2 givenname: Marco surname: Villalobos fullname: Villalobos, Marco organization: Cabot Corporation, Billerica, Massachusetts 01821, United States – sequence: 3 givenname: Emily D orcidid: 0000-0003-4210-9787 surname: Cranston fullname: Cranston, Emily D organization: Department of Chemical Engineering, McMaster University Hamilton , Ontario, Canada L8S 4L8 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27959566$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtOwzAQRS1UREvhDxDykk2KH7HTsIOKQqWKhwTraOLYbSCxix-L_j1BFInVjEbnjnTuKRpZZzVCF5TMKGH0GlSYdWA3fWr9TNaEF1IcoQkVjGRizorRv32MTkP4IISUPC9P0JgVpSiFlBP0eqet2vbgP1u7wQvddalzQeMnsE75fYjQhRu89K7HcavxGmrnITq_x9HhlW1SiL6FDr941yQVW2fP0LEZQvr8MKfofXn_tnjM1s8Pq8XtOgPBScy04JzVmpqcmKIxORBS85qqxvwca8YampsSAAqjCCmk4gNGZJ4D1cooyqbo6vfvzruvpEOs-jaoQQCsdilUdC6YLPhcigG9PKCp7nVT7Xw7GO-rvxrYN9uyZew |
| CitedBy_id | crossref_primary_10_1016_j_biteb_2022_101222 crossref_primary_10_1007_s10570_022_04827_9 crossref_primary_10_1016_j_carbpol_2023_121197 crossref_primary_10_1016_j_cej_2025_161190 crossref_primary_10_1038_s41578_020_00239_y crossref_primary_10_1002_adma_202002404 crossref_primary_10_1016_j_ijbiomac_2024_139203 crossref_primary_10_1088_1755_1315_105_1_012059 crossref_primary_10_1021_acsnano_5c05548 crossref_primary_10_1177_00219983221114415 crossref_primary_10_1016_j_ijbiomac_2023_124337 crossref_primary_10_3390_polym14245402 crossref_primary_10_1007_s10570_020_03618_4 crossref_primary_10_1007_s10570_022_04432_w crossref_primary_10_1016_j_ijbiomac_2021_06_094 crossref_primary_10_3390_nano10071296 crossref_primary_10_1002_cjce_25253 crossref_primary_10_1002_cplu_201900746 crossref_primary_10_1007_s10570_018_2175_7 crossref_primary_10_1002_adsu_202000272 crossref_primary_10_1016_j_carbpol_2022_119285 crossref_primary_10_1016_j_mattod_2018_02_001 crossref_primary_10_1016_j_porgcoat_2020_105969 crossref_primary_10_1016_j_pmatsci_2025_101430 crossref_primary_10_3390_ma14030473 crossref_primary_10_1016_j_ultsonch_2023_106581 crossref_primary_10_1002_pat_5647 crossref_primary_10_1007_s10570_020_03668_8 crossref_primary_10_3390_nano12183188 crossref_primary_10_1016_j_ijbiomac_2022_07_069 crossref_primary_10_1016_j_memsci_2020_118842 crossref_primary_10_3390_polym10050517 crossref_primary_10_1016_j_ijbiomac_2024_136151 crossref_primary_10_1016_j_jfoodeng_2019_04_004 crossref_primary_10_1002_pol_20200590 crossref_primary_10_1007_s10570_025_06690_w crossref_primary_10_1007_s11051_018_4194_6 crossref_primary_10_1016_j_apcatb_2020_118732 crossref_primary_10_1016_j_colsurfb_2023_113464 crossref_primary_10_1002_adsu_202100100 crossref_primary_10_1007_s10570_022_04937_4 crossref_primary_10_1007_s00289_024_05190_4 crossref_primary_10_1039_D4NA00981A crossref_primary_10_1007_s10570_021_04172_3 crossref_primary_10_1016_j_jece_2020_104058 crossref_primary_10_1080_01932691_2019_1614947 crossref_primary_10_1002_mren_201700013 crossref_primary_10_1080_15440478_2019_1691125 crossref_primary_10_1007_s10570_020_03476_0 crossref_primary_10_1016_j_mattod_2020_03_003 crossref_primary_10_1016_j_jclepro_2020_124507 crossref_primary_10_1016_j_ijbiomac_2024_135726 crossref_primary_10_1016_j_cemconcomp_2021_104201 crossref_primary_10_1016_j_ecoenv_2023_115318 crossref_primary_10_1021_acsagscitech_5c00189 crossref_primary_10_1007_s10570_020_03320_5 crossref_primary_10_3390_molecules24203724 crossref_primary_10_1002_adma_202404608 crossref_primary_10_1007_s10570_020_03185_8 crossref_primary_10_1016_j_indcrop_2023_117429 crossref_primary_10_1016_j_jpowsour_2024_235833 crossref_primary_10_1016_j_carbpol_2021_118421 crossref_primary_10_3390_polym13050688 crossref_primary_10_1016_j_ijbiomac_2024_139409 crossref_primary_10_1002_adma_202306653 crossref_primary_10_1016_j_jclepro_2022_131073 crossref_primary_10_1039_C8PY01785A crossref_primary_10_1002_cjce_24299 crossref_primary_10_3390_cryst10080715 crossref_primary_10_1016_j_progpolymsci_2023_101768 crossref_primary_10_1016_j_carbpol_2019_05_091 crossref_primary_10_1007_s10570_019_02533_7 crossref_primary_10_1039_D4NR02276A crossref_primary_10_1002_pc_24748 crossref_primary_10_1002_pc_24869 crossref_primary_10_1515_epoly_2019_0041 crossref_primary_10_1016_j_actbio_2019_01_049 crossref_primary_10_1021_acs_langmuir_4c01685 crossref_primary_10_1038_s41467_022_30226_6 crossref_primary_10_1016_j_carbpol_2023_121315 crossref_primary_10_1007_s13399_022_03718_0 crossref_primary_10_1016_j_cocis_2020_04_004 crossref_primary_10_3390_nano8040228 crossref_primary_10_1016_j_mtcomm_2019_100755 crossref_primary_10_1016_j_ijbiomac_2018_02_135 crossref_primary_10_1016_j_carbpol_2021_118131 crossref_primary_10_1515_psr_2020_0067 crossref_primary_10_1007_s10570_022_04855_5 crossref_primary_10_1007_s10570_023_05674_y crossref_primary_10_1016_j_carbpol_2017_09_002 crossref_primary_10_3390_membranes12070658 crossref_primary_10_3390_nano11071752 crossref_primary_10_1039_D5MH01132A crossref_primary_10_1039_D5RA03113C crossref_primary_10_1016_j_resconrec_2018_12_031 crossref_primary_10_1007_s10570_022_04818_w crossref_primary_10_1016_j_cocis_2017_04_001 crossref_primary_10_1016_j_ijbiomac_2023_128755 crossref_primary_10_1016_j_ijbiomac_2024_131228 crossref_primary_10_1002_adma_202100939 crossref_primary_10_1016_j_jconrel_2021_06_004 crossref_primary_10_1016_j_jclepro_2025_146238 crossref_primary_10_1002_admi_202300162 crossref_primary_10_1002_adma_202000657 crossref_primary_10_1016_j_carbpol_2024_121946 crossref_primary_10_1016_j_jece_2020_104187 crossref_primary_10_1016_j_carbpol_2020_116888 crossref_primary_10_1002_marc_201700409 crossref_primary_10_1016_j_carbpol_2022_119876 crossref_primary_10_3390_fib6010015 crossref_primary_10_1016_j_indcrop_2024_119771 crossref_primary_10_1007_s10311_020_00989_9 crossref_primary_10_1631_jzus_B23d0003 crossref_primary_10_1016_j_compositesb_2024_111579 crossref_primary_10_1016_j_carbpol_2018_04_081 crossref_primary_10_1016_j_carbpol_2022_120168 crossref_primary_10_1002_adpr_202000107 crossref_primary_10_1002_adfm_201808518 crossref_primary_10_1039_C6CS00895J crossref_primary_10_3390_cryst10030199 crossref_primary_10_1016_j_jcis_2021_05_103 crossref_primary_10_1038_s41467_022_31079_9 crossref_primary_10_2478_boku_2018_0005 crossref_primary_10_3390_ma16010074 crossref_primary_10_1016_j_conbuildmat_2019_117497 crossref_primary_10_1016_j_biombioe_2025_107672 crossref_primary_10_1371_journal_pone_0271512 crossref_primary_10_1088_1361_6528_ac6fef crossref_primary_10_1016_j_compositesb_2020_108356 crossref_primary_10_1039_D1PY00644D crossref_primary_10_3390_ma14185137 crossref_primary_10_1016_j_porgcoat_2020_105989 crossref_primary_10_1016_j_carbpol_2019_01_079 crossref_primary_10_1007_s10570_022_04796_z crossref_primary_10_1016_j_compositesb_2020_108590 crossref_primary_10_3390_nano10081559 crossref_primary_10_1039_D2NR04823J crossref_primary_10_1007_s10570_019_02363_7 crossref_primary_10_1002_polb_24898 crossref_primary_10_1186_s40643_020_00302_0 crossref_primary_10_1007_s10853_018_2235_2 crossref_primary_10_1039_D0NR04491A crossref_primary_10_1016_j_cej_2024_152019 crossref_primary_10_1016_j_cej_2024_155409 crossref_primary_10_1016_j_indcrop_2024_118575 crossref_primary_10_1016_j_polymer_2018_04_064 crossref_primary_10_1016_j_carbpol_2020_116664 crossref_primary_10_3390_nano11071862 crossref_primary_10_1139_cjb_2019_0050 crossref_primary_10_3390_polym14081560 crossref_primary_10_3389_fbioe_2019_00280 crossref_primary_10_1002_app_47878 crossref_primary_10_1364_OME_548069 crossref_primary_10_1016_j_jcis_2022_10_100 crossref_primary_10_1007_s10570_019_02377_1 crossref_primary_10_3390_pr8060698 crossref_primary_10_1016_j_cej_2023_147160 crossref_primary_10_1002_bbb_2423 crossref_primary_10_1016_j_carbpol_2020_116393 crossref_primary_10_1016_j_colcom_2022_100684 crossref_primary_10_3390_ma14216463 crossref_primary_10_1557_mrc_2020_23 crossref_primary_10_1016_j_indcrop_2023_117011 crossref_primary_10_1007_s10924_022_02672_2 crossref_primary_10_1016_j_ijbiomac_2023_126132 crossref_primary_10_1007_s00396_022_04999_7 crossref_primary_10_1021_acs_biomac_5c00184 crossref_primary_10_1002_mame_202500208 crossref_primary_10_1016_j_carbpol_2022_119681 crossref_primary_10_1007_s11431_018_9441_1 crossref_primary_10_1007_s10570_023_05348_9 crossref_primary_10_1016_j_electacta_2023_143536 crossref_primary_10_1007_s11483_022_09752_9 crossref_primary_10_1038_s41598_019_47834_w crossref_primary_10_1021_acs_biomac_4c01710 crossref_primary_10_1002_app_49127 crossref_primary_10_1007_s10570_022_04727_y crossref_primary_10_1016_j_carbpol_2020_117136 crossref_primary_10_1016_j_jcis_2025_01_155 crossref_primary_10_1016_j_carbpol_2020_116283 crossref_primary_10_3390_nano13152258 crossref_primary_10_1016_j_fpsl_2021_100730 crossref_primary_10_1177_0021998318817814 crossref_primary_10_1038_s41563_021_01135_8 crossref_primary_10_1002_adsu_202500654 crossref_primary_10_1007_s10570_020_03253_z crossref_primary_10_1016_j_indcrop_2024_119294 crossref_primary_10_1016_j_foodres_2021_110930 crossref_primary_10_1016_j_measurement_2024_115499 crossref_primary_10_1098_rsta_2020_0330 crossref_primary_10_1016_j_mattod_2023_04_006 crossref_primary_10_1007_s10570_020_03060_6 crossref_primary_10_1039_D1EN00407G crossref_primary_10_1002_adsu_202300511 crossref_primary_10_1016_j_carbpol_2017_08_005 crossref_primary_10_3390_nano10091775 crossref_primary_10_1002_adma_201801335 crossref_primary_10_1002_admi_202202452 crossref_primary_10_3390_polym9090424 crossref_primary_10_1016_j_foodres_2022_111877 crossref_primary_10_1016_j_ijbiomac_2025_147296 crossref_primary_10_1002_pc_25929 crossref_primary_10_1007_s10570_020_03018_8 crossref_primary_10_3389_fchem_2022_835663 crossref_primary_10_3390_app10093201 crossref_primary_10_1016_j_carbpol_2020_116187 crossref_primary_10_1016_j_mtcomm_2024_108925 crossref_primary_10_1016_j_foodhyd_2023_108571 crossref_primary_10_1007_s10570_019_02622_7 crossref_primary_10_1007_s10570_020_03167_w crossref_primary_10_3390_cryst13071010 crossref_primary_10_1016_j_carbpol_2020_115899 crossref_primary_10_1007_s00396_020_04640_5 crossref_primary_10_1002_app_55856 crossref_primary_10_1038_s41566_019_0448_9 crossref_primary_10_1038_s41427_018_0046_1 crossref_primary_10_3390_membranes12050537 crossref_primary_10_1002_smll_202207207 crossref_primary_10_1038_s41598_021_98048_y crossref_primary_10_1016_j_carbpol_2025_124300 crossref_primary_10_1016_j_cossms_2018_11_005 crossref_primary_10_1002_mren_201800050 crossref_primary_10_1007_s10570_019_02889_w crossref_primary_10_3390_ma12121951 crossref_primary_10_1016_j_carbpol_2024_122889 crossref_primary_10_3390_polym17152124 crossref_primary_10_1002_mren_202100051 crossref_primary_10_1016_j_carbpol_2023_120622 crossref_primary_10_1088_1681_7575_aaeb60 crossref_primary_10_1016_j_carbpol_2022_120465 crossref_primary_10_1039_D0RA05976E crossref_primary_10_3390_nano8100859 crossref_primary_10_1016_j_carbpol_2023_120987 crossref_primary_10_1016_j_chemosphere_2022_137647 crossref_primary_10_1002_pc_24583 crossref_primary_10_1007_s10570_023_05180_1 crossref_primary_10_1016_j_carbpol_2020_117445 crossref_primary_10_1016_j_mtchem_2022_100886 crossref_primary_10_1038_s41598_020_76144_9 crossref_primary_10_3390_molecules25153411 crossref_primary_10_3390_nano9091232 crossref_primary_10_1002_adsu_202000196 crossref_primary_10_1002_adma_201906886 crossref_primary_10_1016_j_foodhyd_2018_03_047 crossref_primary_10_1002_adma_201704477 crossref_primary_10_1088_2515_7639_ac4ee5 crossref_primary_10_1016_j_carbpol_2023_121723 crossref_primary_10_1007_s10570_021_04187_w crossref_primary_10_1007_s10570_020_03384_3 crossref_primary_10_1016_j_foodhyd_2019_105344 crossref_primary_10_1016_j_ijbiomac_2024_136998 crossref_primary_10_1016_j_susmat_2024_e01232 crossref_primary_10_1016_j_clet_2025_101063 crossref_primary_10_1002_adhm_202001985 crossref_primary_10_1016_j_colsurfa_2022_129532 crossref_primary_10_1016_j_seppur_2025_134690 crossref_primary_10_1016_j_pmatsci_2020_100668 crossref_primary_10_1016_j_jcis_2021_11_174 crossref_primary_10_3390_nano10081603 crossref_primary_10_1007_s10570_017_1482_8 crossref_primary_10_1177_07316844251366624 crossref_primary_10_1016_j_ijbiomac_2025_140967 crossref_primary_10_1016_j_carbpol_2020_117345 crossref_primary_10_1080_10408398_2020_1832440 crossref_primary_10_1007_s10570_020_03429_7 crossref_primary_10_1007_s10570_018_1739_x crossref_primary_10_1007_s10570_023_05699_3 crossref_primary_10_1016_j_compscitech_2018_08_032 crossref_primary_10_1140_epjst_e2020_000015_y crossref_primary_10_1016_j_cis_2023_102961 crossref_primary_10_1016_j_ijbiomac_2025_141494 crossref_primary_10_1002_mren_202100046 crossref_primary_10_1016_j_carbpol_2025_123240 crossref_primary_10_3390_molecules28124667 crossref_primary_10_1016_j_carbpol_2023_121146 crossref_primary_10_1016_j_carbpol_2020_117112 crossref_primary_10_1007_s10570_018_2075_x crossref_primary_10_1007_s10570_018_2090_y crossref_primary_10_1016_j_ijbiomac_2021_03_126 crossref_primary_10_1016_j_polymdegradstab_2019_109044 crossref_primary_10_1002_marc_202100493 crossref_primary_10_1016_j_carbpol_2021_118507 crossref_primary_10_1002_mren_201700068 crossref_primary_10_1007_s10570_021_04219_5 crossref_primary_10_1002_cssc_202401024 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1021/acs.langmuir.6b03765 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-5827 |
| ExternalDocumentID | 27959566 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .K2 4.4 53G 55A 5GY 5VS 7~N AABXI AAHBH ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ EJD F5P GGK GNL IH9 IHE JG~ NPM RNS ROL TN5 UI2 UPT VF5 VG9 W1F YQT ~02 7X8 |
| ID | FETCH-LOGICAL-a530t-e5332be1f40f7df4a00b3b1cdfbe1fb22d14f9aaa7fc0076c3f7d0644a1ecfc12 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 430 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394724100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-5827 |
| IngestDate | Fri Jul 11 14:29:13 EDT 2025 Mon Jul 21 05:45:11 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a530t-e5332be1f40f7df4a00b3b1cdfbe1fb22d14f9aaa7fc0076c3f7d0644a1ecfc12 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4210-9787 |
| OpenAccessLink | https://macsphere.mcmaster.ca/bitstream/11375/21951/1/Benchmarking%20Cellulose%20Nanocrystals%202016.pdf |
| PMID | 27959566 |
| PQID | 1852673865 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1852673865 pubmed_primary_27959566 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-21 |
| PublicationDateYYYYMMDD | 2017-02-21 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Langmuir |
| PublicationTitleAlternate | Langmuir |
| PublicationYear | 2017 |
| SSID | ssj0009349 |
| Score | 2.661276 |
| SecondaryResourceType | review_article |
| Snippet | The renewability, biocompatibility, and mechanical properties of cellulose nanocrystals (CNCs) have made them an attractive material for numerous composite,... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1583 |
| Title | Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27959566 https://www.proquest.com/docview/1852673865 |
| Volume | 33 |
| WOSCitedRecordID | wos000394724100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UCnrx_agvVvCaNrt5bONFtFg8aKmg0FvY3ezSQpqtSSv03zubBz0JgpcclgSyk3l8O5OZD6E7zkJJAEmApTFlW3LA5jxfwFHFDt8iIdOBLskm2HDYG4-jUZ1wK-rfKhufWDrqxEibI-_aJt-KofJh_uVY1ihbXa0pNDZRywMoY7WajdfTwiOvhL8Qolwn6FHWtM5R0uWy6NiM4Gw5zTuhcMHOgt9BZhlsBvv_fc0DtFfDTPxY6cUh2lDZEdrpN-xux-j9CdRzMuNlqhz3VZouU1MoDN7WyHwFmDEt7vEgNzMMEBG_Vrpi8hVeGLzm-8CjamIsfN0T9Dl4_ui_ODW9gsMDz104CpAeFYpo39Us0T53XeEJIhNtFwWlCfF1xDlnWtqCnfTgNkAwPidKaknoKdrKTKbOEVZhKAUXPJSR8kkCx2pNucsjlniBlKFqo9tGWjHs09YkeKbMsojX8mqjs0rk8byasxFTy4MOcPPiD09fol1qA65tNidXqKVBSuoabcvvxbTIb0q9gOtw9PYDxlTFVw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+Cellulose+Nanocrystals%3A+From+the+Laboratory+to+Industrial+Production&rft.jtitle=Langmuir&rft.au=Reid%2C+Michael+S&rft.au=Villalobos%2C+Marco&rft.au=Cranston%2C+Emily+D&rft.date=2017-02-21&rft.eissn=1520-5827&rft.volume=33&rft.issue=7&rft.spage=1583&rft_id=info:doi/10.1021%2Facs.langmuir.6b03765&rft_id=info%3Apmid%2F27959566&rft_id=info%3Apmid%2F27959566&rft.externalDocID=27959566 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5827&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5827&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5827&client=summon |