Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production

The renewability, biocompatibility, and mechanical properties of cellulose nanocrystals (CNCs) have made them an attractive material for numerous composite, biomedical, and rheological applications. However, for CNCs to shift from a laboratory curiosity to commercial applications, researchers must t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Langmuir Ročník 33; číslo 7; s. 1583
Hlavní autoři: Reid, Michael S, Villalobos, Marco, Cranston, Emily D
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 21.02.2017
ISSN:1520-5827, 1520-5827
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The renewability, biocompatibility, and mechanical properties of cellulose nanocrystals (CNCs) have made them an attractive material for numerous composite, biomedical, and rheological applications. However, for CNCs to shift from a laboratory curiosity to commercial applications, researchers must transition from CNCs extracted on the bench scale to material produced on an industrial scale. There are a number of companies currently producing kilogram to ton per day quantities of sulfuric acid-hydrolyzed CNCs as well as other nanocelluloses, as described herein. With the recent intensification of industrially produced CNCs and the variety of cellulose sources, hydrolysis methods, and purification procedures, the characterization of these materials becomes critical. This has further been justified by the past two decades of research that demonstrate that the CNC stability and behavior are highly dependent on the surface chemistry, surface charge density, and particle size. This work outlines key test methods that should be employed to characterize these properties to ensure a "known" starting material and consistent performance. Of the sulfuric acid-extracted CNCs examined, industrially produced material compared well with laboratory-made CNCs, exhibiting similar charge density, colloidal and thermal stability, crystallinity, morphology, and self-assembly behavior. In addition, it was observed that further purification of CNCs using Soxhlet extraction in ethanol had minimal impact on the nanoparticle properties and is unlikely to be necessary for many applications. Overall, the current standing of industrially produced CNCs is positive, suggesting that the evolution to commercial-scale applications will not be hindered by CNC production.
AbstractList The renewability, biocompatibility, and mechanical properties of cellulose nanocrystals (CNCs) have made them an attractive material for numerous composite, biomedical, and rheological applications. However, for CNCs to shift from a laboratory curiosity to commercial applications, researchers must transition from CNCs extracted on the bench scale to material produced on an industrial scale. There are a number of companies currently producing kilogram to ton per day quantities of sulfuric acid-hydrolyzed CNCs as well as other nanocelluloses, as described herein. With the recent intensification of industrially produced CNCs and the variety of cellulose sources, hydrolysis methods, and purification procedures, the characterization of these materials becomes critical. This has further been justified by the past two decades of research that demonstrate that the CNC stability and behavior are highly dependent on the surface chemistry, surface charge density, and particle size. This work outlines key test methods that should be employed to characterize these properties to ensure a "known" starting material and consistent performance. Of the sulfuric acid-extracted CNCs examined, industrially produced material compared well with laboratory-made CNCs, exhibiting similar charge density, colloidal and thermal stability, crystallinity, morphology, and self-assembly behavior. In addition, it was observed that further purification of CNCs using Soxhlet extraction in ethanol had minimal impact on the nanoparticle properties and is unlikely to be necessary for many applications. Overall, the current standing of industrially produced CNCs is positive, suggesting that the evolution to commercial-scale applications will not be hindered by CNC production.
The renewability, biocompatibility, and mechanical properties of cellulose nanocrystals (CNCs) have made them an attractive material for numerous composite, biomedical, and rheological applications. However, for CNCs to shift from a laboratory curiosity to commercial applications, researchers must transition from CNCs extracted on the bench scale to material produced on an industrial scale. There are a number of companies currently producing kilogram to ton per day quantities of sulfuric acid-hydrolyzed CNCs as well as other nanocelluloses, as described herein. With the recent intensification of industrially produced CNCs and the variety of cellulose sources, hydrolysis methods, and purification procedures, the characterization of these materials becomes critical. This has further been justified by the past two decades of research that demonstrate that the CNC stability and behavior are highly dependent on the surface chemistry, surface charge density, and particle size. This work outlines key test methods that should be employed to characterize these properties to ensure a "known" starting material and consistent performance. Of the sulfuric acid-extracted CNCs examined, industrially produced material compared well with laboratory-made CNCs, exhibiting similar charge density, colloidal and thermal stability, crystallinity, morphology, and self-assembly behavior. In addition, it was observed that further purification of CNCs using Soxhlet extraction in ethanol had minimal impact on the nanoparticle properties and is unlikely to be necessary for many applications. Overall, the current standing of industrially produced CNCs is positive, suggesting that the evolution to commercial-scale applications will not be hindered by CNC production.The renewability, biocompatibility, and mechanical properties of cellulose nanocrystals (CNCs) have made them an attractive material for numerous composite, biomedical, and rheological applications. However, for CNCs to shift from a laboratory curiosity to commercial applications, researchers must transition from CNCs extracted on the bench scale to material produced on an industrial scale. There are a number of companies currently producing kilogram to ton per day quantities of sulfuric acid-hydrolyzed CNCs as well as other nanocelluloses, as described herein. With the recent intensification of industrially produced CNCs and the variety of cellulose sources, hydrolysis methods, and purification procedures, the characterization of these materials becomes critical. This has further been justified by the past two decades of research that demonstrate that the CNC stability and behavior are highly dependent on the surface chemistry, surface charge density, and particle size. This work outlines key test methods that should be employed to characterize these properties to ensure a "known" starting material and consistent performance. Of the sulfuric acid-extracted CNCs examined, industrially produced material compared well with laboratory-made CNCs, exhibiting similar charge density, colloidal and thermal stability, crystallinity, morphology, and self-assembly behavior. In addition, it was observed that further purification of CNCs using Soxhlet extraction in ethanol had minimal impact on the nanoparticle properties and is unlikely to be necessary for many applications. Overall, the current standing of industrially produced CNCs is positive, suggesting that the evolution to commercial-scale applications will not be hindered by CNC production.
Author Cranston, Emily D
Villalobos, Marco
Reid, Michael S
Author_xml – sequence: 1
  givenname: Michael S
  surname: Reid
  fullname: Reid, Michael S
  organization: Department of Chemical Engineering, McMaster University Hamilton , Ontario, Canada L8S 4L8
– sequence: 2
  givenname: Marco
  surname: Villalobos
  fullname: Villalobos, Marco
  organization: Cabot Corporation, Billerica, Massachusetts 01821, United States
– sequence: 3
  givenname: Emily D
  orcidid: 0000-0003-4210-9787
  surname: Cranston
  fullname: Cranston, Emily D
  organization: Department of Chemical Engineering, McMaster University Hamilton , Ontario, Canada L8S 4L8
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27959566$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtOwzAQRS1UREvhDxDykk2KH7HTsIOKQqWKhwTraOLYbSCxix-L_j1BFInVjEbnjnTuKRpZZzVCF5TMKGH0GlSYdWA3fWr9TNaEF1IcoQkVjGRizorRv32MTkP4IISUPC9P0JgVpSiFlBP0eqet2vbgP1u7wQvddalzQeMnsE75fYjQhRu89K7HcavxGmrnITq_x9HhlW1SiL6FDr941yQVW2fP0LEZQvr8MKfofXn_tnjM1s8Pq8XtOgPBScy04JzVmpqcmKIxORBS85qqxvwca8YampsSAAqjCCmk4gNGZJ4D1cooyqbo6vfvzruvpEOs-jaoQQCsdilUdC6YLPhcigG9PKCp7nVT7Xw7GO-rvxrYN9uyZew
CitedBy_id crossref_primary_10_1016_j_biteb_2022_101222
crossref_primary_10_1007_s10570_022_04827_9
crossref_primary_10_1016_j_carbpol_2023_121197
crossref_primary_10_1016_j_cej_2025_161190
crossref_primary_10_1038_s41578_020_00239_y
crossref_primary_10_1002_adma_202002404
crossref_primary_10_1016_j_ijbiomac_2024_139203
crossref_primary_10_1088_1755_1315_105_1_012059
crossref_primary_10_1021_acsnano_5c05548
crossref_primary_10_1177_00219983221114415
crossref_primary_10_1016_j_ijbiomac_2023_124337
crossref_primary_10_3390_polym14245402
crossref_primary_10_1007_s10570_020_03618_4
crossref_primary_10_1007_s10570_022_04432_w
crossref_primary_10_1016_j_ijbiomac_2021_06_094
crossref_primary_10_3390_nano10071296
crossref_primary_10_1002_cjce_25253
crossref_primary_10_1002_cplu_201900746
crossref_primary_10_1007_s10570_018_2175_7
crossref_primary_10_1002_adsu_202000272
crossref_primary_10_1016_j_carbpol_2022_119285
crossref_primary_10_1016_j_mattod_2018_02_001
crossref_primary_10_1016_j_porgcoat_2020_105969
crossref_primary_10_1016_j_pmatsci_2025_101430
crossref_primary_10_3390_ma14030473
crossref_primary_10_1016_j_ultsonch_2023_106581
crossref_primary_10_1002_pat_5647
crossref_primary_10_1007_s10570_020_03668_8
crossref_primary_10_3390_nano12183188
crossref_primary_10_1016_j_ijbiomac_2022_07_069
crossref_primary_10_1016_j_memsci_2020_118842
crossref_primary_10_3390_polym10050517
crossref_primary_10_1016_j_ijbiomac_2024_136151
crossref_primary_10_1016_j_jfoodeng_2019_04_004
crossref_primary_10_1002_pol_20200590
crossref_primary_10_1007_s10570_025_06690_w
crossref_primary_10_1007_s11051_018_4194_6
crossref_primary_10_1016_j_apcatb_2020_118732
crossref_primary_10_1016_j_colsurfb_2023_113464
crossref_primary_10_1002_adsu_202100100
crossref_primary_10_1007_s10570_022_04937_4
crossref_primary_10_1007_s00289_024_05190_4
crossref_primary_10_1039_D4NA00981A
crossref_primary_10_1007_s10570_021_04172_3
crossref_primary_10_1016_j_jece_2020_104058
crossref_primary_10_1080_01932691_2019_1614947
crossref_primary_10_1002_mren_201700013
crossref_primary_10_1080_15440478_2019_1691125
crossref_primary_10_1007_s10570_020_03476_0
crossref_primary_10_1016_j_mattod_2020_03_003
crossref_primary_10_1016_j_jclepro_2020_124507
crossref_primary_10_1016_j_ijbiomac_2024_135726
crossref_primary_10_1016_j_cemconcomp_2021_104201
crossref_primary_10_1016_j_ecoenv_2023_115318
crossref_primary_10_1021_acsagscitech_5c00189
crossref_primary_10_1007_s10570_020_03320_5
crossref_primary_10_3390_molecules24203724
crossref_primary_10_1002_adma_202404608
crossref_primary_10_1007_s10570_020_03185_8
crossref_primary_10_1016_j_indcrop_2023_117429
crossref_primary_10_1016_j_jpowsour_2024_235833
crossref_primary_10_1016_j_carbpol_2021_118421
crossref_primary_10_3390_polym13050688
crossref_primary_10_1016_j_ijbiomac_2024_139409
crossref_primary_10_1002_adma_202306653
crossref_primary_10_1016_j_jclepro_2022_131073
crossref_primary_10_1039_C8PY01785A
crossref_primary_10_1002_cjce_24299
crossref_primary_10_3390_cryst10080715
crossref_primary_10_1016_j_progpolymsci_2023_101768
crossref_primary_10_1016_j_carbpol_2019_05_091
crossref_primary_10_1007_s10570_019_02533_7
crossref_primary_10_1039_D4NR02276A
crossref_primary_10_1002_pc_24748
crossref_primary_10_1002_pc_24869
crossref_primary_10_1515_epoly_2019_0041
crossref_primary_10_1016_j_actbio_2019_01_049
crossref_primary_10_1021_acs_langmuir_4c01685
crossref_primary_10_1038_s41467_022_30226_6
crossref_primary_10_1016_j_carbpol_2023_121315
crossref_primary_10_1007_s13399_022_03718_0
crossref_primary_10_1016_j_cocis_2020_04_004
crossref_primary_10_3390_nano8040228
crossref_primary_10_1016_j_mtcomm_2019_100755
crossref_primary_10_1016_j_ijbiomac_2018_02_135
crossref_primary_10_1016_j_carbpol_2021_118131
crossref_primary_10_1515_psr_2020_0067
crossref_primary_10_1007_s10570_022_04855_5
crossref_primary_10_1007_s10570_023_05674_y
crossref_primary_10_1016_j_carbpol_2017_09_002
crossref_primary_10_3390_membranes12070658
crossref_primary_10_3390_nano11071752
crossref_primary_10_1039_D5MH01132A
crossref_primary_10_1039_D5RA03113C
crossref_primary_10_1016_j_resconrec_2018_12_031
crossref_primary_10_1007_s10570_022_04818_w
crossref_primary_10_1016_j_cocis_2017_04_001
crossref_primary_10_1016_j_ijbiomac_2023_128755
crossref_primary_10_1016_j_ijbiomac_2024_131228
crossref_primary_10_1002_adma_202100939
crossref_primary_10_1016_j_jconrel_2021_06_004
crossref_primary_10_1016_j_jclepro_2025_146238
crossref_primary_10_1002_admi_202300162
crossref_primary_10_1002_adma_202000657
crossref_primary_10_1016_j_carbpol_2024_121946
crossref_primary_10_1016_j_jece_2020_104187
crossref_primary_10_1016_j_carbpol_2020_116888
crossref_primary_10_1002_marc_201700409
crossref_primary_10_1016_j_carbpol_2022_119876
crossref_primary_10_3390_fib6010015
crossref_primary_10_1016_j_indcrop_2024_119771
crossref_primary_10_1007_s10311_020_00989_9
crossref_primary_10_1631_jzus_B23d0003
crossref_primary_10_1016_j_compositesb_2024_111579
crossref_primary_10_1016_j_carbpol_2018_04_081
crossref_primary_10_1016_j_carbpol_2022_120168
crossref_primary_10_1002_adpr_202000107
crossref_primary_10_1002_adfm_201808518
crossref_primary_10_1039_C6CS00895J
crossref_primary_10_3390_cryst10030199
crossref_primary_10_1016_j_jcis_2021_05_103
crossref_primary_10_1038_s41467_022_31079_9
crossref_primary_10_2478_boku_2018_0005
crossref_primary_10_3390_ma16010074
crossref_primary_10_1016_j_conbuildmat_2019_117497
crossref_primary_10_1016_j_biombioe_2025_107672
crossref_primary_10_1371_journal_pone_0271512
crossref_primary_10_1088_1361_6528_ac6fef
crossref_primary_10_1016_j_compositesb_2020_108356
crossref_primary_10_1039_D1PY00644D
crossref_primary_10_3390_ma14185137
crossref_primary_10_1016_j_porgcoat_2020_105989
crossref_primary_10_1016_j_carbpol_2019_01_079
crossref_primary_10_1007_s10570_022_04796_z
crossref_primary_10_1016_j_compositesb_2020_108590
crossref_primary_10_3390_nano10081559
crossref_primary_10_1039_D2NR04823J
crossref_primary_10_1007_s10570_019_02363_7
crossref_primary_10_1002_polb_24898
crossref_primary_10_1186_s40643_020_00302_0
crossref_primary_10_1007_s10853_018_2235_2
crossref_primary_10_1039_D0NR04491A
crossref_primary_10_1016_j_cej_2024_152019
crossref_primary_10_1016_j_cej_2024_155409
crossref_primary_10_1016_j_indcrop_2024_118575
crossref_primary_10_1016_j_polymer_2018_04_064
crossref_primary_10_1016_j_carbpol_2020_116664
crossref_primary_10_3390_nano11071862
crossref_primary_10_1139_cjb_2019_0050
crossref_primary_10_3390_polym14081560
crossref_primary_10_3389_fbioe_2019_00280
crossref_primary_10_1002_app_47878
crossref_primary_10_1364_OME_548069
crossref_primary_10_1016_j_jcis_2022_10_100
crossref_primary_10_1007_s10570_019_02377_1
crossref_primary_10_3390_pr8060698
crossref_primary_10_1016_j_cej_2023_147160
crossref_primary_10_1002_bbb_2423
crossref_primary_10_1016_j_carbpol_2020_116393
crossref_primary_10_1016_j_colcom_2022_100684
crossref_primary_10_3390_ma14216463
crossref_primary_10_1557_mrc_2020_23
crossref_primary_10_1016_j_indcrop_2023_117011
crossref_primary_10_1007_s10924_022_02672_2
crossref_primary_10_1016_j_ijbiomac_2023_126132
crossref_primary_10_1007_s00396_022_04999_7
crossref_primary_10_1021_acs_biomac_5c00184
crossref_primary_10_1002_mame_202500208
crossref_primary_10_1016_j_carbpol_2022_119681
crossref_primary_10_1007_s11431_018_9441_1
crossref_primary_10_1007_s10570_023_05348_9
crossref_primary_10_1016_j_electacta_2023_143536
crossref_primary_10_1007_s11483_022_09752_9
crossref_primary_10_1038_s41598_019_47834_w
crossref_primary_10_1021_acs_biomac_4c01710
crossref_primary_10_1002_app_49127
crossref_primary_10_1007_s10570_022_04727_y
crossref_primary_10_1016_j_carbpol_2020_117136
crossref_primary_10_1016_j_jcis_2025_01_155
crossref_primary_10_1016_j_carbpol_2020_116283
crossref_primary_10_3390_nano13152258
crossref_primary_10_1016_j_fpsl_2021_100730
crossref_primary_10_1177_0021998318817814
crossref_primary_10_1038_s41563_021_01135_8
crossref_primary_10_1002_adsu_202500654
crossref_primary_10_1007_s10570_020_03253_z
crossref_primary_10_1016_j_indcrop_2024_119294
crossref_primary_10_1016_j_foodres_2021_110930
crossref_primary_10_1016_j_measurement_2024_115499
crossref_primary_10_1098_rsta_2020_0330
crossref_primary_10_1016_j_mattod_2023_04_006
crossref_primary_10_1007_s10570_020_03060_6
crossref_primary_10_1039_D1EN00407G
crossref_primary_10_1002_adsu_202300511
crossref_primary_10_1016_j_carbpol_2017_08_005
crossref_primary_10_3390_nano10091775
crossref_primary_10_1002_adma_201801335
crossref_primary_10_1002_admi_202202452
crossref_primary_10_3390_polym9090424
crossref_primary_10_1016_j_foodres_2022_111877
crossref_primary_10_1016_j_ijbiomac_2025_147296
crossref_primary_10_1002_pc_25929
crossref_primary_10_1007_s10570_020_03018_8
crossref_primary_10_3389_fchem_2022_835663
crossref_primary_10_3390_app10093201
crossref_primary_10_1016_j_carbpol_2020_116187
crossref_primary_10_1016_j_mtcomm_2024_108925
crossref_primary_10_1016_j_foodhyd_2023_108571
crossref_primary_10_1007_s10570_019_02622_7
crossref_primary_10_1007_s10570_020_03167_w
crossref_primary_10_3390_cryst13071010
crossref_primary_10_1016_j_carbpol_2020_115899
crossref_primary_10_1007_s00396_020_04640_5
crossref_primary_10_1002_app_55856
crossref_primary_10_1038_s41566_019_0448_9
crossref_primary_10_1038_s41427_018_0046_1
crossref_primary_10_3390_membranes12050537
crossref_primary_10_1002_smll_202207207
crossref_primary_10_1038_s41598_021_98048_y
crossref_primary_10_1016_j_carbpol_2025_124300
crossref_primary_10_1016_j_cossms_2018_11_005
crossref_primary_10_1002_mren_201800050
crossref_primary_10_1007_s10570_019_02889_w
crossref_primary_10_3390_ma12121951
crossref_primary_10_1016_j_carbpol_2024_122889
crossref_primary_10_3390_polym17152124
crossref_primary_10_1002_mren_202100051
crossref_primary_10_1016_j_carbpol_2023_120622
crossref_primary_10_1088_1681_7575_aaeb60
crossref_primary_10_1016_j_carbpol_2022_120465
crossref_primary_10_1039_D0RA05976E
crossref_primary_10_3390_nano8100859
crossref_primary_10_1016_j_carbpol_2023_120987
crossref_primary_10_1016_j_chemosphere_2022_137647
crossref_primary_10_1002_pc_24583
crossref_primary_10_1007_s10570_023_05180_1
crossref_primary_10_1016_j_carbpol_2020_117445
crossref_primary_10_1016_j_mtchem_2022_100886
crossref_primary_10_1038_s41598_020_76144_9
crossref_primary_10_3390_molecules25153411
crossref_primary_10_3390_nano9091232
crossref_primary_10_1002_adsu_202000196
crossref_primary_10_1002_adma_201906886
crossref_primary_10_1016_j_foodhyd_2018_03_047
crossref_primary_10_1002_adma_201704477
crossref_primary_10_1088_2515_7639_ac4ee5
crossref_primary_10_1016_j_carbpol_2023_121723
crossref_primary_10_1007_s10570_021_04187_w
crossref_primary_10_1007_s10570_020_03384_3
crossref_primary_10_1016_j_foodhyd_2019_105344
crossref_primary_10_1016_j_ijbiomac_2024_136998
crossref_primary_10_1016_j_susmat_2024_e01232
crossref_primary_10_1016_j_clet_2025_101063
crossref_primary_10_1002_adhm_202001985
crossref_primary_10_1016_j_colsurfa_2022_129532
crossref_primary_10_1016_j_seppur_2025_134690
crossref_primary_10_1016_j_pmatsci_2020_100668
crossref_primary_10_1016_j_jcis_2021_11_174
crossref_primary_10_3390_nano10081603
crossref_primary_10_1007_s10570_017_1482_8
crossref_primary_10_1177_07316844251366624
crossref_primary_10_1016_j_ijbiomac_2025_140967
crossref_primary_10_1016_j_carbpol_2020_117345
crossref_primary_10_1080_10408398_2020_1832440
crossref_primary_10_1007_s10570_020_03429_7
crossref_primary_10_1007_s10570_018_1739_x
crossref_primary_10_1007_s10570_023_05699_3
crossref_primary_10_1016_j_compscitech_2018_08_032
crossref_primary_10_1140_epjst_e2020_000015_y
crossref_primary_10_1016_j_cis_2023_102961
crossref_primary_10_1016_j_ijbiomac_2025_141494
crossref_primary_10_1002_mren_202100046
crossref_primary_10_1016_j_carbpol_2025_123240
crossref_primary_10_3390_molecules28124667
crossref_primary_10_1016_j_carbpol_2023_121146
crossref_primary_10_1016_j_carbpol_2020_117112
crossref_primary_10_1007_s10570_018_2075_x
crossref_primary_10_1007_s10570_018_2090_y
crossref_primary_10_1016_j_ijbiomac_2021_03_126
crossref_primary_10_1016_j_polymdegradstab_2019_109044
crossref_primary_10_1002_marc_202100493
crossref_primary_10_1016_j_carbpol_2021_118507
crossref_primary_10_1002_mren_201700068
crossref_primary_10_1007_s10570_021_04219_5
crossref_primary_10_1002_cssc_202401024
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acs.langmuir.6b03765
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
ExternalDocumentID 27959566
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.K2
4.4
53G
55A
5GY
5VS
7~N
AABXI
AAHBH
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH9
IHE
JG~
NPM
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
YQT
~02
7X8
ID FETCH-LOGICAL-a530t-e5332be1f40f7df4a00b3b1cdfbe1fb22d14f9aaa7fc0076c3f7d0644a1ecfc12
IEDL.DBID 7X8
ISICitedReferencesCount 430
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394724100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-5827
IngestDate Fri Jul 11 14:29:13 EDT 2025
Mon Jul 21 05:45:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a530t-e5332be1f40f7df4a00b3b1cdfbe1fb22d14f9aaa7fc0076c3f7d0644a1ecfc12
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4210-9787
OpenAccessLink https://macsphere.mcmaster.ca/bitstream/11375/21951/1/Benchmarking%20Cellulose%20Nanocrystals%202016.pdf
PMID 27959566
PQID 1852673865
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1852673865
pubmed_primary_27959566
PublicationCentury 2000
PublicationDate 2017-02-21
PublicationDateYYYYMMDD 2017-02-21
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2017
SSID ssj0009349
Score 2.661276
SecondaryResourceType review_article
Snippet The renewability, biocompatibility, and mechanical properties of cellulose nanocrystals (CNCs) have made them an attractive material for numerous composite,...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1583
Title Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production
URI https://www.ncbi.nlm.nih.gov/pubmed/27959566
https://www.proquest.com/docview/1852673865
Volume 33
WOSCitedRecordID wos000394724100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UCnrx_agvVvCaNrt5bONFtFg8aKmg0FvY3ezSQpqtSSv03zubBz0JgpcclgSyk3l8O5OZD6E7zkJJAEmApTFlW3LA5jxfwFHFDt8iIdOBLskm2HDYG4-jUZ1wK-rfKhufWDrqxEibI-_aJt-KofJh_uVY1ihbXa0pNDZRywMoY7WajdfTwiOvhL8Qolwn6FHWtM5R0uWy6NiM4Gw5zTuhcMHOgt9BZhlsBvv_fc0DtFfDTPxY6cUh2lDZEdrpN-xux-j9CdRzMuNlqhz3VZouU1MoDN7WyHwFmDEt7vEgNzMMEBG_Vrpi8hVeGLzm-8CjamIsfN0T9Dl4_ui_ODW9gsMDz104CpAeFYpo39Us0T53XeEJIhNtFwWlCfF1xDlnWtqCnfTgNkAwPidKaknoKdrKTKbOEVZhKAUXPJSR8kkCx2pNucsjlniBlKFqo9tGWjHs09YkeKbMsojX8mqjs0rk8byasxFTy4MOcPPiD09fol1qA65tNidXqKVBSuoabcvvxbTIb0q9gOtw9PYDxlTFVw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+Cellulose+Nanocrystals%3A+From+the+Laboratory+to+Industrial+Production&rft.jtitle=Langmuir&rft.au=Reid%2C+Michael+S&rft.au=Villalobos%2C+Marco&rft.au=Cranston%2C+Emily+D&rft.date=2017-02-21&rft.eissn=1520-5827&rft.volume=33&rft.issue=7&rft.spage=1583&rft_id=info:doi/10.1021%2Facs.langmuir.6b03765&rft_id=info%3Apmid%2F27959566&rft_id=info%3Apmid%2F27959566&rft.externalDocID=27959566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5827&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5827&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5827&client=summon