Data-driven control of hydraulic servo actuator: An event-triggered adaptive dynamic programming approach

Hydraulic servo actuators (HSAs) are often used in the industry in tasks that request great power, high accuracy and dynamic motion. It is well known that an HSA is a highly complex nonlinear system, and that the system parameters cannot be accurately determined due to various uncertainties, an inab...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical biosciences and engineering : MBE Ročník 20; číslo 5; s. 8561 - 8582
Hlavní autoři: Djordjevic, Vladimir, Tao, Hongfeng, Song, Xiaona, He, Shuping, Gao, Weinan, Stojanovic, Vladimir
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States AIMS Press 01.01.2023
Témata:
ISSN:1551-0018, 1551-0018
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hydraulic servo actuators (HSAs) are often used in the industry in tasks that request great power, high accuracy and dynamic motion. It is well known that an HSA is a highly complex nonlinear system, and that the system parameters cannot be accurately determined due to various uncertainties, an inability to measure some parameters and disturbances. This paper considers an event-triggered learning control problem of the HSA with unknown dynamics based on adaptive dynamic programming (ADP) via output feedback. Due to increasing practical application of the control algorithm, a linear discrete model of HSA is considered and an online learning data driven controller is used, which is based on measured input and output data instead of unmeasurable states and unknown system parameters. Hence, the ADP-based data driven controller in this paper requires neither the knowledge of the HSA dynamics nor exosystem dynamics. Then, an event-based feedback strategy is introduced to the closed-loop system to save the communication resources and reduce the number of control updates. The convergence of the ADP-based control algorithm is also theoretically shown. Simulation results verify the feasibility and effectiveness of the proposed approach in solving the optimal control problem of HSAs.
AbstractList Hydraulic servo actuators (HSAs) are often used in the industry in tasks that request great power, high accuracy and dynamic motion. It is well known that an HSA is a highly complex nonlinear system, and that the system parameters cannot be accurately determined due to various uncertainties, an inability to measure some parameters and disturbances. This paper considers an event-triggered learning control problem of the HSA with unknown dynamics based on adaptive dynamic programming (ADP) via output feedback. Due to increasing practical application of the control algorithm, a linear discrete model of HSA is considered and an online learning data driven controller is used, which is based on measured input and output data instead of unmeasurable states and unknown system parameters. Hence, the ADP-based data driven controller in this paper requires neither the knowledge of the HSA dynamics nor exosystem dynamics. Then, an event-based feedback strategy is introduced to the closed-loop system to save the communication resources and reduce the number of control updates. The convergence of the ADP-based control algorithm is also theoretically shown. Simulation results verify the feasibility and effectiveness of the proposed approach in solving the optimal control problem of HSAs.
Hydraulic servo actuators (HSAs) are often used in the industry in tasks that request great power, high accuracy and dynamic motion. It is well known that an HSA is a highly complex nonlinear system, and that the system parameters cannot be accurately determined due to various uncertainties, an inability to measure some parameters and disturbances. This paper considers an event-triggered learning control problem of the HSA with unknown dynamics based on adaptive dynamic programming (ADP) via output feedback. Due to increasing practical application of the control algorithm, a linear discrete model of HSA is considered and an online learning data driven controller is used, which is based on measured input and output data instead of unmeasurable states and unknown system parameters. Hence, the ADP-based data driven controller in this paper requires neither the knowledge of the HSA dynamics nor exosystem dynamics. Then, an event-based feedback strategy is introduced to the closed-loop system to save the communication resources and reduce the number of control updates. The convergence of the ADP-based control algorithm is also theoretically shown. Simulation results verify the feasibility and effectiveness of the proposed approach in solving the optimal control problem of HSAs.Hydraulic servo actuators (HSAs) are often used in the industry in tasks that request great power, high accuracy and dynamic motion. It is well known that an HSA is a highly complex nonlinear system, and that the system parameters cannot be accurately determined due to various uncertainties, an inability to measure some parameters and disturbances. This paper considers an event-triggered learning control problem of the HSA with unknown dynamics based on adaptive dynamic programming (ADP) via output feedback. Due to increasing practical application of the control algorithm, a linear discrete model of HSA is considered and an online learning data driven controller is used, which is based on measured input and output data instead of unmeasurable states and unknown system parameters. Hence, the ADP-based data driven controller in this paper requires neither the knowledge of the HSA dynamics nor exosystem dynamics. Then, an event-based feedback strategy is introduced to the closed-loop system to save the communication resources and reduce the number of control updates. The convergence of the ADP-based control algorithm is also theoretically shown. Simulation results verify the feasibility and effectiveness of the proposed approach in solving the optimal control problem of HSAs.
Author Tao, Hongfeng
Stojanovic, Vladimir
He, Shuping
Djordjevic, Vladimir
Gao, Weinan
Song, Xiaona
Author_xml – sequence: 1
  givenname: Vladimir
  surname: Djordjevic
  fullname: Djordjevic, Vladimir
  organization: Faculty of Mechanical and Civil Engineering, University of Kragujevac, 36000 Kraljevo, Serbia
– sequence: 2
  givenname: Hongfeng
  surname: Tao
  fullname: Tao, Hongfeng
  organization: Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, China
– sequence: 3
  givenname: Xiaona
  surname: Song
  fullname: Song, Xiaona
  organization: School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China
– sequence: 4
  givenname: Shuping
  surname: He
  fullname: He, Shuping
  organization: Key Laboratory of Intelligent Computing and Signal Processing (Ministry of Education) School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China
– sequence: 5
  givenname: Weinan
  surname: Gao
  fullname: Gao, Weinan
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China
– sequence: 6
  givenname: Vladimir
  surname: Stojanovic
  fullname: Stojanovic, Vladimir
  organization: Faculty of Mechanical and Civil Engineering, University of Kragujevac, 36000 Kraljevo, Serbia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37161212$$D View this record in MEDLINE/PubMed
BookMark eNptkUtr3TAQhUVJyatZdV-0LASnetiW1F1IkzYQ6KZdi9HDjoJt3Upy4P776ubelFKKFtKIc75h5pyhoyUuHqH3lFxxxdtPs_FXjDDORf8GndKuow0hVB799T5BZzk_EcJbzttjdMIF7Smj7BSFL1CgcSk8-wXbuJQUJxwH_Lh1CdYpWJx9eo4YbFmhxPQZXy_YV3FpSgrj6JN3GBxsSiVgt11grp5NimOCeQ7LiGFTK7CP79DbAabsLw73Ofp5d_vj5lvz8P3r_c31QwMdJ6UBJkTnlQSihKmH9Epay53rwFvLBmUFZR6GHpQkg6LEEToY2QrHrOSm4-fofs91EZ70JoUZ0lZHCPrlI6ZRQyrBTl6T1lDGpHO9EK2xyth28EJKa4iwBERlfdyz6gi_Vp-LnkO2fppg8XHNmklKFVdE7dp-OEhXM3v3p_HrqquA7gU2xZyTH7QNBUrY7RzCpCnRuzh1jVMf4qyey388r9j_qX8DdXmhrw
CitedBy_id crossref_primary_10_1016_j_ejcon_2024_101021
crossref_primary_10_1109_TASE_2024_3351122
crossref_primary_10_1016_j_apm_2025_116349
crossref_primary_10_1109_TASE_2025_3568118
crossref_primary_10_1109_TASE_2023_3340726
crossref_primary_10_1016_j_jfranklin_2024_106957
crossref_primary_10_1016_j_conengprac_2024_105870
crossref_primary_10_1007_s10845_024_02492_2
crossref_primary_10_1109_TASE_2023_3330966
crossref_primary_10_1007_s40747_023_01243_9
crossref_primary_10_1016_j_conengprac_2023_105711
crossref_primary_10_1016_j_conengprac_2023_105755
crossref_primary_10_1016_j_engappai_2024_108228
crossref_primary_10_1016_j_engappai_2024_108987
crossref_primary_10_1016_j_conengprac_2023_105754
crossref_primary_10_1016_j_engappai_2024_109436
crossref_primary_10_1007_s00170_024_14256_6
crossref_primary_10_1109_ACCESS_2025_3529714
crossref_primary_10_1007_s00170_023_12060_2
crossref_primary_10_1016_j_neucom_2023_126964
crossref_primary_10_1016_j_engappai_2024_109882
crossref_primary_10_1016_j_eswa_2023_120863
crossref_primary_10_1016_j_neucom_2024_128665
crossref_primary_10_1007_s10845_024_02396_1
crossref_primary_10_1016_j_engappai_2024_108190
crossref_primary_10_1088_1361_6501_ad50f8
crossref_primary_10_1007_s40747_023_01155_8
crossref_primary_10_1016_j_jfranklin_2024_107446
crossref_primary_10_1109_TAI_2023_3318895
crossref_primary_10_1109_TASE_2023_3325534
crossref_primary_10_1109_TASE_2024_3360600
crossref_primary_10_1016_j_neunet_2025_107253
crossref_primary_10_1109_TVT_2024_3408917
crossref_primary_10_1016_j_neunet_2024_106261
crossref_primary_10_1016_j_conengprac_2023_105722
crossref_primary_10_1016_j_conengprac_2023_105723
crossref_primary_10_1007_s12555_023_0140_1
crossref_primary_10_1016_j_neucom_2025_129748
crossref_primary_10_1016_j_engappai_2024_109357
crossref_primary_10_1007_s00521_024_10741_x
crossref_primary_10_1016_j_jestch_2025_102054
crossref_primary_10_1007_s40747_024_01585_y
crossref_primary_10_1109_TCYB_2024_3418904
crossref_primary_10_1007_s40747_023_01280_4
crossref_primary_10_1016_j_engappai_2024_108180
crossref_primary_10_1016_j_ins_2023_119490
crossref_primary_10_1109_TMECH_2024_3446731
crossref_primary_10_1007_s11071_024_09957_2
crossref_primary_10_1109_TMECH_2024_3390129
crossref_primary_10_1016_j_ins_2023_119862
crossref_primary_10_1016_j_ins_2023_119267
crossref_primary_10_1016_j_ins_2023_120014
crossref_primary_10_1016_j_conengprac_2023_105772
crossref_primary_10_1016_j_isatra_2023_12_044
crossref_primary_10_1016_j_measurement_2024_115619
crossref_primary_10_1016_j_engappai_2023_106949
crossref_primary_10_1007_s40747_024_01436_w
crossref_primary_10_1016_j_aej_2025_09_008
crossref_primary_10_1016_j_conengprac_2023_105735
crossref_primary_10_1016_j_engappai_2024_108648
crossref_primary_10_1016_j_neucom_2024_127869
crossref_primary_10_1002_acs_3863
crossref_primary_10_1088_1361_6501_ad880d
crossref_primary_10_1007_s40747_024_01550_9
crossref_primary_10_1016_j_cie_2023_109671
crossref_primary_10_1002_rnc_7647
crossref_primary_10_1016_j_conengprac_2023_105588
crossref_primary_10_1016_j_neucom_2023_126967
crossref_primary_10_1007_s40815_024_01846_5
crossref_primary_10_1016_j_conengprac_2024_105842
crossref_primary_10_1016_j_aeue_2024_155161
crossref_primary_10_1016_j_conengprac_2024_105847
crossref_primary_10_1016_j_engappai_2024_109725
crossref_primary_10_1016_j_engappai_2024_108284
crossref_primary_10_1007_s10846_023_01938_8
crossref_primary_10_1109_TCSI_2024_3381191
crossref_primary_10_1016_j_ins_2023_119594
crossref_primary_10_1016_j_ins_2023_119992
crossref_primary_10_1109_TII_2025_3568499
crossref_primary_10_1016_j_chaos_2024_114954
crossref_primary_10_1016_j_ins_2024_120236
crossref_primary_10_1016_j_engappai_2024_109051
crossref_primary_10_1016_j_eswa_2023_123047
crossref_primary_10_1016_j_jfranklin_2023_09_029
crossref_primary_10_1016_j_ins_2025_121902
crossref_primary_10_1002_rnc_7177
crossref_primary_10_1016_j_ins_2024_120756
crossref_primary_10_1016_j_neunet_2024_106566
Cites_doi 10.1016/j.ymssp.2017.08.032
10.1007/s11071-008-9363-1
10.1109/TCSII.2021.3098820
10.1016/j.automatica.2012.03.007
10.1109/TAC.2015.2396645
10.1002/9781118122631
10.1016/j.neunet.2022.09.021
10.1016/j.automatica.2006.09.019
10.1007/s10010-011-0144-5
10.1109/TSMCB.2010.2043839
10.1109/TAC.2011.2166294
10.1016/j.automatica.2016.05.003
10.1002/9781119569145
10.1016/j.ymssp.2016.01.004
10.1016/j.automatica.2011.03.005
10.1109/TAC.1971.1099755
10.1109/TNNLS.2015.2416259
10.1002/9781118287422
10.1016/j.automatica.2018.06.010
10.1007/s11071-015-2252-5
10.1007/s00170-016-8627-z
10.1109/TNNLS.2017.2761718
10.1049/iet-cta.2015.0977
10.1002/9781118453988
10.1109/TAC.2012.2220443
10.1007/s11071-020-05616-4
10.1007/978-1-4471-3037-6
10.1109/TASE.2020.2996160
10.1049/iet-its.2019.0404
10.1109/TSMCC.2002.801727
10.1016/j.mechatronics.2016.05.002
10.1016/j.mechatronics.2014.05.006
10.1109/TFUZZ.2019.2914005
10.1016/j.automatica.2016.05.008
10.1109/TCYB.2021.3104178
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOA
DOI 10.3934/mbe.2023376
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-0018
EndPage 8582
ExternalDocumentID oai_doaj_org_article_04b1228dd6774bc9bc4fe788cb07c0a7
37161212
10_3934_mbe_2023376
Genre Journal Article
GroupedDBID ---
53G
5GY
AAYXX
AENEX
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
IAO
ITC
J9A
ML0
OK1
P2P
RAN
SV3
TUS
NPM
7X8
ID FETCH-LOGICAL-a530t-a2775e98a097b7b70698cc3dd5aecc2f9c712eaf6a980f910d01fb847d2c83b53
IEDL.DBID DOA
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000953160200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-0018
IngestDate Fri Oct 03 12:45:00 EDT 2025
Fri Jul 11 13:24:04 EDT 2025
Thu Jan 02 22:52:54 EST 2025
Sat Nov 29 04:14:53 EST 2025
Tue Nov 18 20:29:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords event-triggered control
data-driven control
adaptive dynamic programming
hydraulic servo actuator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a530t-a2775e98a097b7b70698cc3dd5aecc2f9c712eaf6a980f910d01fb847d2c83b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/04b1228dd6774bc9bc4fe788cb07c0a7
PMID 37161212
PQID 2811939095
PQPubID 23479
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_04b1228dd6774bc9bc4fe788cb07c0a7
proquest_miscellaneous_2811939095
pubmed_primary_37161212
crossref_citationtrail_10_3934_mbe_2023376
crossref_primary_10_3934_mbe_2023376
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Mathematical biosciences and engineering : MBE
PublicationTitleAlternate Math Biosci Eng
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/mbe.2023376-30
key-10.3934/mbe.2023376-31
key-10.3934/mbe.2023376-32
key-10.3934/mbe.2023376-33
key-10.3934/mbe.2023376-27
key-10.3934/mbe.2023376-28
key-10.3934/mbe.2023376-29
key-10.3934/mbe.2023376-23
key-10.3934/mbe.2023376-24
key-10.3934/mbe.2023376-25
key-10.3934/mbe.2023376-26
key-10.3934/mbe.2023376-41
key-10.3934/mbe.2023376-42
key-10.3934/mbe.2023376-43
key-10.3934/mbe.2023376-44
key-10.3934/mbe.2023376-40
key-10.3934/mbe.2023376-38
key-10.3934/mbe.2023376-39
key-10.3934/mbe.2023376-9
key-10.3934/mbe.2023376-34
key-10.3934/mbe.2023376-35
key-10.3934/mbe.2023376-7
key-10.3934/mbe.2023376-36
key-10.3934/mbe.2023376-8
key-10.3934/mbe.2023376-37
key-10.3934/mbe.2023376-5
key-10.3934/mbe.2023376-6
key-10.3934/mbe.2023376-3
key-10.3934/mbe.2023376-4
key-10.3934/mbe.2023376-1
key-10.3934/mbe.2023376-2
key-10.3934/mbe.2023376-52
key-10.3934/mbe.2023376-10
key-10.3934/mbe.2023376-11
key-10.3934/mbe.2023376-50
key-10.3934/mbe.2023376-51
key-10.3934/mbe.2023376-49
key-10.3934/mbe.2023376-45
key-10.3934/mbe.2023376-46
key-10.3934/mbe.2023376-47
key-10.3934/mbe.2023376-48
key-10.3934/mbe.2023376-20
key-10.3934/mbe.2023376-21
key-10.3934/mbe.2023376-22
key-10.3934/mbe.2023376-16
key-10.3934/mbe.2023376-17
key-10.3934/mbe.2023376-18
key-10.3934/mbe.2023376-19
key-10.3934/mbe.2023376-12
key-10.3934/mbe.2023376-13
key-10.3934/mbe.2023376-14
key-10.3934/mbe.2023376-15
References_xml – ident: key-10.3934/mbe.2023376-18
  doi: 10.1016/j.ymssp.2017.08.032
– ident: key-10.3934/mbe.2023376-29
  doi: 10.1007/s11071-008-9363-1
– ident: key-10.3934/mbe.2023376-37
  doi: 10.1109/TCSII.2021.3098820
– ident: key-10.3934/mbe.2023376-52
  doi: 10.1016/j.automatica.2012.03.007
– ident: key-10.3934/mbe.2023376-7
– ident: key-10.3934/mbe.2023376-34
  doi: 10.1109/TAC.2015.2396645
– ident: key-10.3934/mbe.2023376-12
  doi: 10.1002/9781118122631
– ident: key-10.3934/mbe.2023376-36
  doi: 10.1016/j.neunet.2022.09.021
– ident: key-10.3934/mbe.2023376-49
– ident: key-10.3934/mbe.2023376-50
– ident: key-10.3934/mbe.2023376-16
– ident: key-10.3934/mbe.2023376-31
– ident: key-10.3934/mbe.2023376-43
  doi: 10.1016/j.automatica.2006.09.019
– ident: key-10.3934/mbe.2023376-11
– ident: key-10.3934/mbe.2023376-6
  doi: 10.1007/s10010-011-0144-5
– ident: key-10.3934/mbe.2023376-44
  doi: 10.1109/TSMCB.2010.2043839
– ident: key-10.3934/mbe.2023376-42
  doi: 10.1109/TAC.2011.2166294
– ident: key-10.3934/mbe.2023376-26
  doi: 10.1016/j.automatica.2016.05.003
– ident: key-10.3934/mbe.2023376-2
  doi: 10.1002/9781119569145
– ident: key-10.3934/mbe.2023376-19
  doi: 10.1016/j.ymssp.2016.01.004
– ident: key-10.3934/mbe.2023376-51
  doi: 10.1016/j.automatica.2011.03.005
– ident: key-10.3934/mbe.2023376-46
  doi: 10.1109/TAC.1971.1099755
– ident: key-10.3934/mbe.2023376-39
  doi: 10.1109/TNNLS.2015.2416259
– ident: key-10.3934/mbe.2023376-3
– ident: key-10.3934/mbe.2023376-41
  doi: 10.1002/9781118287422
– ident: key-10.3934/mbe.2023376-20
  doi: 10.1016/j.automatica.2018.06.010
– ident: key-10.3934/mbe.2023376-4
  doi: 10.1007/s11071-015-2252-5
– ident: key-10.3934/mbe.2023376-5
  doi: 10.1007/s00170-016-8627-z
– ident: key-10.3934/mbe.2023376-10
– ident: key-10.3934/mbe.2023376-25
  doi: 10.1109/TNNLS.2017.2761718
– ident: key-10.3934/mbe.2023376-22
  doi: 10.1049/iet-cta.2015.0977
– ident: key-10.3934/mbe.2023376-9
  doi: 10.1002/9781118453988
– ident: key-10.3934/mbe.2023376-32
  doi: 10.1109/TAC.2012.2220443
– ident: key-10.3934/mbe.2023376-47
– ident: key-10.3934/mbe.2023376-14
  doi: 10.1007/s11071-020-05616-4
– ident: key-10.3934/mbe.2023376-24
– ident: key-10.3934/mbe.2023376-45
  doi: 10.1007/978-1-4471-3037-6
– ident: key-10.3934/mbe.2023376-17
  doi: 10.1109/TASE.2020.2996160
– ident: key-10.3934/mbe.2023376-15
  doi: 10.1049/iet-its.2019.0404
– ident: key-10.3934/mbe.2023376-23
  doi: 10.1109/TSMCC.2002.801727
– ident: key-10.3934/mbe.2023376-13
– ident: key-10.3934/mbe.2023376-8
– ident: key-10.3934/mbe.2023376-27
  doi: 10.1016/j.mechatronics.2016.05.002
– ident: key-10.3934/mbe.2023376-38
– ident: key-10.3934/mbe.2023376-28
– ident: key-10.3934/mbe.2023376-40
– ident: key-10.3934/mbe.2023376-21
  doi: 10.1016/j.mechatronics.2014.05.006
– ident: key-10.3934/mbe.2023376-33
  doi: 10.1109/TFUZZ.2019.2914005
– ident: key-10.3934/mbe.2023376-30
  doi: 10.1016/j.automatica.2016.05.008
– ident: key-10.3934/mbe.2023376-35
  doi: 10.1109/TCYB.2021.3104178
– ident: key-10.3934/mbe.2023376-48
– ident: key-10.3934/mbe.2023376-1
SSID ssj0034334
Score 2.5662453
Snippet Hydraulic servo actuators (HSAs) are often used in the industry in tasks that request great power, high accuracy and dynamic motion. It is well known that an...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 8561
SubjectTerms adaptive dynamic programming
data-driven control
event-triggered control
hydraulic servo actuator
Title Data-driven control of hydraulic servo actuator: An event-triggered adaptive dynamic programming approach
URI https://www.ncbi.nlm.nih.gov/pubmed/37161212
https://www.proquest.com/docview/2811939095
https://doaj.org/article/04b1228dd6774bc9bc4fe788cb07c0a7
Volume 20
WOSCitedRecordID wos000953160200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1551-0018
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034334
  issn: 1551-0018
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC5ccWEvi7rr7viiBU8LwU53ku725hMPIh4U5haqH3EHNCNjRvDfW53ODB522cuSW2hIp6pS9VWn6iuAQ1UYWdnYsYxOZ5HQO9OVdJkUsnJNib70Pc_stbq50eOxuf0w6ivWhCV64CS4I17YXAjtfUVAxTpjXdEEytuc5cpx7PvIuTKLZCr5YFlIWaRuPGlkcfRkIyOmkDJSi3yIPz1N_9-xZR9jLtfh6wAO2Una1AashHYTPqdxkW_fYHKOHWZ-Fh0UG2rM2bRhv9_8DOePE8fiEeuUYWwKoVz6mJ20rGdoyjpKwh_iWE6GHp-ji2M-zaJnQ4XWE8UwtmAY_w73lxd3Z1fZMCohw1LyLkOhVBmMRm6UpYtXRjsnvS-RdCQa41QuAjYVGs0bggie542lyOSF09KWcgtW22kbfgJzXoRKBWvLEgslGlSuKnKBJGsCJ5aP4NdCgLUbeMTjOIvHmvKJKO2apF0P0h7B4XLxc6LP-POy06iJ5ZLIed3fIEuoB0uo_2UJIzhY6LGmbyT--MA2TOcvtdA54VRDaHIEP5KCl4-SlDDmFL-3_8cWduBLfKN0RLMLq91sHvZgzb12k5fZPnxSY73fG-o7Kc7uIQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+control+of+hydraulic+servo+actuator%3A+An+event-triggered+adaptive+dynamic+programming+approach&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Djordjevic%2C+Vladimir&rft.au=Tao%2C+Hongfeng&rft.au=Song%2C+Xiaona&rft.au=He%2C+Shuping&rft.date=2023-01-01&rft.issn=1551-0018&rft.eissn=1551-0018&rft.volume=20&rft.issue=5&rft.spage=8561&rft_id=info:doi/10.3934%2Fmbe.2023376&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon