Data-driven control of hydraulic servo actuator: An event-triggered adaptive dynamic programming approach
Hydraulic servo actuators (HSAs) are often used in the industry in tasks that request great power, high accuracy and dynamic motion. It is well known that an HSA is a highly complex nonlinear system, and that the system parameters cannot be accurately determined due to various uncertainties, an inab...
Uloženo v:
| Vydáno v: | Mathematical biosciences and engineering : MBE Ročník 20; číslo 5; s. 8561 - 8582 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
AIMS Press
01.01.2023
|
| Témata: | |
| ISSN: | 1551-0018, 1551-0018 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Hydraulic servo actuators (HSAs) are often used in the industry in tasks that request great power, high accuracy and dynamic motion. It is well known that an HSA is a highly complex nonlinear system, and that the system parameters cannot be accurately determined due to various uncertainties, an inability to measure some parameters and disturbances. This paper considers an event-triggered learning control problem of the HSA with unknown dynamics based on adaptive dynamic programming (ADP) via output feedback. Due to increasing practical application of the control algorithm, a linear discrete model of HSA is considered and an online learning data driven controller is used, which is based on measured input and output data instead of unmeasurable states and unknown system parameters. Hence, the ADP-based data driven controller in this paper requires neither the knowledge of the HSA dynamics nor exosystem dynamics. Then, an event-based feedback strategy is introduced to the closed-loop system to save the communication resources and reduce the number of control updates. The convergence of the ADP-based control algorithm is also theoretically shown. Simulation results verify the feasibility and effectiveness of the proposed approach in solving the optimal control problem of HSAs. |
|---|---|
| AbstractList | Hydraulic servo actuators (HSAs) are often used in the industry in tasks that request great power, high accuracy and dynamic motion. It is well known that an HSA is a highly complex nonlinear system, and that the system parameters cannot be accurately determined due to various uncertainties, an inability to measure some parameters and disturbances. This paper considers an event-triggered learning control problem of the HSA with unknown dynamics based on adaptive dynamic programming (ADP) via output feedback. Due to increasing practical application of the control algorithm, a linear discrete model of HSA is considered and an online learning data driven controller is used, which is based on measured input and output data instead of unmeasurable states and unknown system parameters. Hence, the ADP-based data driven controller in this paper requires neither the knowledge of the HSA dynamics nor exosystem dynamics. Then, an event-based feedback strategy is introduced to the closed-loop system to save the communication resources and reduce the number of control updates. The convergence of the ADP-based control algorithm is also theoretically shown. Simulation results verify the feasibility and effectiveness of the proposed approach in solving the optimal control problem of HSAs. Hydraulic servo actuators (HSAs) are often used in the industry in tasks that request great power, high accuracy and dynamic motion. It is well known that an HSA is a highly complex nonlinear system, and that the system parameters cannot be accurately determined due to various uncertainties, an inability to measure some parameters and disturbances. This paper considers an event-triggered learning control problem of the HSA with unknown dynamics based on adaptive dynamic programming (ADP) via output feedback. Due to increasing practical application of the control algorithm, a linear discrete model of HSA is considered and an online learning data driven controller is used, which is based on measured input and output data instead of unmeasurable states and unknown system parameters. Hence, the ADP-based data driven controller in this paper requires neither the knowledge of the HSA dynamics nor exosystem dynamics. Then, an event-based feedback strategy is introduced to the closed-loop system to save the communication resources and reduce the number of control updates. The convergence of the ADP-based control algorithm is also theoretically shown. Simulation results verify the feasibility and effectiveness of the proposed approach in solving the optimal control problem of HSAs.Hydraulic servo actuators (HSAs) are often used in the industry in tasks that request great power, high accuracy and dynamic motion. It is well known that an HSA is a highly complex nonlinear system, and that the system parameters cannot be accurately determined due to various uncertainties, an inability to measure some parameters and disturbances. This paper considers an event-triggered learning control problem of the HSA with unknown dynamics based on adaptive dynamic programming (ADP) via output feedback. Due to increasing practical application of the control algorithm, a linear discrete model of HSA is considered and an online learning data driven controller is used, which is based on measured input and output data instead of unmeasurable states and unknown system parameters. Hence, the ADP-based data driven controller in this paper requires neither the knowledge of the HSA dynamics nor exosystem dynamics. Then, an event-based feedback strategy is introduced to the closed-loop system to save the communication resources and reduce the number of control updates. The convergence of the ADP-based control algorithm is also theoretically shown. Simulation results verify the feasibility and effectiveness of the proposed approach in solving the optimal control problem of HSAs. |
| Author | Tao, Hongfeng Stojanovic, Vladimir He, Shuping Djordjevic, Vladimir Gao, Weinan Song, Xiaona |
| Author_xml | – sequence: 1 givenname: Vladimir surname: Djordjevic fullname: Djordjevic, Vladimir organization: Faculty of Mechanical and Civil Engineering, University of Kragujevac, 36000 Kraljevo, Serbia – sequence: 2 givenname: Hongfeng surname: Tao fullname: Tao, Hongfeng organization: Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, China – sequence: 3 givenname: Xiaona surname: Song fullname: Song, Xiaona organization: School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China – sequence: 4 givenname: Shuping surname: He fullname: He, Shuping organization: Key Laboratory of Intelligent Computing and Signal Processing (Ministry of Education) School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China – sequence: 5 givenname: Weinan surname: Gao fullname: Gao, Weinan organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China – sequence: 6 givenname: Vladimir surname: Stojanovic fullname: Stojanovic, Vladimir organization: Faculty of Mechanical and Civil Engineering, University of Kragujevac, 36000 Kraljevo, Serbia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37161212$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkUtr3TAQhUVJyatZdV-0LASnetiW1F1IkzYQ6KZdi9HDjoJt3Upy4P776ubelFKKFtKIc75h5pyhoyUuHqH3lFxxxdtPs_FXjDDORf8GndKuow0hVB799T5BZzk_EcJbzttjdMIF7Smj7BSFL1CgcSk8-wXbuJQUJxwH_Lh1CdYpWJx9eo4YbFmhxPQZXy_YV3FpSgrj6JN3GBxsSiVgt11grp5NimOCeQ7LiGFTK7CP79DbAabsLw73Ofp5d_vj5lvz8P3r_c31QwMdJ6UBJkTnlQSihKmH9Epay53rwFvLBmUFZR6GHpQkg6LEEToY2QrHrOSm4-fofs91EZ70JoUZ0lZHCPrlI6ZRQyrBTl6T1lDGpHO9EK2xyth28EJKa4iwBERlfdyz6gi_Vp-LnkO2fppg8XHNmklKFVdE7dp-OEhXM3v3p_HrqquA7gU2xZyTH7QNBUrY7RzCpCnRuzh1jVMf4qyey388r9j_qX8DdXmhrw |
| CitedBy_id | crossref_primary_10_1016_j_ejcon_2024_101021 crossref_primary_10_1109_TASE_2024_3351122 crossref_primary_10_1016_j_apm_2025_116349 crossref_primary_10_1109_TASE_2025_3568118 crossref_primary_10_1109_TASE_2023_3340726 crossref_primary_10_1016_j_jfranklin_2024_106957 crossref_primary_10_1016_j_conengprac_2024_105870 crossref_primary_10_1007_s10845_024_02492_2 crossref_primary_10_1109_TASE_2023_3330966 crossref_primary_10_1007_s40747_023_01243_9 crossref_primary_10_1016_j_conengprac_2023_105711 crossref_primary_10_1016_j_conengprac_2023_105755 crossref_primary_10_1016_j_engappai_2024_108228 crossref_primary_10_1016_j_engappai_2024_108987 crossref_primary_10_1016_j_conengprac_2023_105754 crossref_primary_10_1016_j_engappai_2024_109436 crossref_primary_10_1007_s00170_024_14256_6 crossref_primary_10_1109_ACCESS_2025_3529714 crossref_primary_10_1007_s00170_023_12060_2 crossref_primary_10_1016_j_neucom_2023_126964 crossref_primary_10_1016_j_engappai_2024_109882 crossref_primary_10_1016_j_eswa_2023_120863 crossref_primary_10_1016_j_neucom_2024_128665 crossref_primary_10_1007_s10845_024_02396_1 crossref_primary_10_1016_j_engappai_2024_108190 crossref_primary_10_1088_1361_6501_ad50f8 crossref_primary_10_1007_s40747_023_01155_8 crossref_primary_10_1016_j_jfranklin_2024_107446 crossref_primary_10_1109_TAI_2023_3318895 crossref_primary_10_1109_TASE_2023_3325534 crossref_primary_10_1109_TASE_2024_3360600 crossref_primary_10_1016_j_neunet_2025_107253 crossref_primary_10_1109_TVT_2024_3408917 crossref_primary_10_1016_j_neunet_2024_106261 crossref_primary_10_1016_j_conengprac_2023_105722 crossref_primary_10_1016_j_conengprac_2023_105723 crossref_primary_10_1007_s12555_023_0140_1 crossref_primary_10_1016_j_neucom_2025_129748 crossref_primary_10_1016_j_engappai_2024_109357 crossref_primary_10_1007_s00521_024_10741_x crossref_primary_10_1016_j_jestch_2025_102054 crossref_primary_10_1007_s40747_024_01585_y crossref_primary_10_1109_TCYB_2024_3418904 crossref_primary_10_1007_s40747_023_01280_4 crossref_primary_10_1016_j_engappai_2024_108180 crossref_primary_10_1016_j_ins_2023_119490 crossref_primary_10_1109_TMECH_2024_3446731 crossref_primary_10_1007_s11071_024_09957_2 crossref_primary_10_1109_TMECH_2024_3390129 crossref_primary_10_1016_j_ins_2023_119862 crossref_primary_10_1016_j_ins_2023_119267 crossref_primary_10_1016_j_ins_2023_120014 crossref_primary_10_1016_j_conengprac_2023_105772 crossref_primary_10_1016_j_isatra_2023_12_044 crossref_primary_10_1016_j_measurement_2024_115619 crossref_primary_10_1016_j_engappai_2023_106949 crossref_primary_10_1007_s40747_024_01436_w crossref_primary_10_1016_j_aej_2025_09_008 crossref_primary_10_1016_j_conengprac_2023_105735 crossref_primary_10_1016_j_engappai_2024_108648 crossref_primary_10_1016_j_neucom_2024_127869 crossref_primary_10_1002_acs_3863 crossref_primary_10_1088_1361_6501_ad880d crossref_primary_10_1007_s40747_024_01550_9 crossref_primary_10_1016_j_cie_2023_109671 crossref_primary_10_1002_rnc_7647 crossref_primary_10_1016_j_conengprac_2023_105588 crossref_primary_10_1016_j_neucom_2023_126967 crossref_primary_10_1007_s40815_024_01846_5 crossref_primary_10_1016_j_conengprac_2024_105842 crossref_primary_10_1016_j_aeue_2024_155161 crossref_primary_10_1016_j_conengprac_2024_105847 crossref_primary_10_1016_j_engappai_2024_109725 crossref_primary_10_1016_j_engappai_2024_108284 crossref_primary_10_1007_s10846_023_01938_8 crossref_primary_10_1109_TCSI_2024_3381191 crossref_primary_10_1016_j_ins_2023_119594 crossref_primary_10_1016_j_ins_2023_119992 crossref_primary_10_1109_TII_2025_3568499 crossref_primary_10_1016_j_chaos_2024_114954 crossref_primary_10_1016_j_ins_2024_120236 crossref_primary_10_1016_j_engappai_2024_109051 crossref_primary_10_1016_j_eswa_2023_123047 crossref_primary_10_1016_j_jfranklin_2023_09_029 crossref_primary_10_1016_j_ins_2025_121902 crossref_primary_10_1002_rnc_7177 crossref_primary_10_1016_j_ins_2024_120756 crossref_primary_10_1016_j_neunet_2024_106566 |
| Cites_doi | 10.1016/j.ymssp.2017.08.032 10.1007/s11071-008-9363-1 10.1109/TCSII.2021.3098820 10.1016/j.automatica.2012.03.007 10.1109/TAC.2015.2396645 10.1002/9781118122631 10.1016/j.neunet.2022.09.021 10.1016/j.automatica.2006.09.019 10.1007/s10010-011-0144-5 10.1109/TSMCB.2010.2043839 10.1109/TAC.2011.2166294 10.1016/j.automatica.2016.05.003 10.1002/9781119569145 10.1016/j.ymssp.2016.01.004 10.1016/j.automatica.2011.03.005 10.1109/TAC.1971.1099755 10.1109/TNNLS.2015.2416259 10.1002/9781118287422 10.1016/j.automatica.2018.06.010 10.1007/s11071-015-2252-5 10.1007/s00170-016-8627-z 10.1109/TNNLS.2017.2761718 10.1049/iet-cta.2015.0977 10.1002/9781118453988 10.1109/TAC.2012.2220443 10.1007/s11071-020-05616-4 10.1007/978-1-4471-3037-6 10.1109/TASE.2020.2996160 10.1049/iet-its.2019.0404 10.1109/TSMCC.2002.801727 10.1016/j.mechatronics.2016.05.002 10.1016/j.mechatronics.2014.05.006 10.1109/TFUZZ.2019.2914005 10.1016/j.automatica.2016.05.008 10.1109/TCYB.2021.3104178 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 DOA |
| DOI | 10.3934/mbe.2023376 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1551-0018 |
| EndPage | 8582 |
| ExternalDocumentID | oai_doaj_org_article_04b1228dd6774bc9bc4fe788cb07c0a7 37161212 10_3934_mbe_2023376 |
| Genre | Journal Article |
| GroupedDBID | --- 53G 5GY AAYXX AENEX ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBD EBS EJD EMOBN F5P GROUPED_DOAJ IAO ITC J9A ML0 OK1 P2P RAN SV3 TUS NPM 7X8 |
| ID | FETCH-LOGICAL-a530t-a2775e98a097b7b70698cc3dd5aecc2f9c712eaf6a980f910d01fb847d2c83b53 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000953160200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-0018 |
| IngestDate | Fri Oct 03 12:45:00 EDT 2025 Fri Jul 11 13:24:04 EDT 2025 Thu Jan 02 22:52:54 EST 2025 Sat Nov 29 04:14:53 EST 2025 Tue Nov 18 20:29:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | event-triggered control data-driven control adaptive dynamic programming hydraulic servo actuator |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a530t-a2775e98a097b7b70698cc3dd5aecc2f9c712eaf6a980f910d01fb847d2c83b53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/04b1228dd6774bc9bc4fe788cb07c0a7 |
| PMID | 37161212 |
| PQID | 2811939095 |
| PQPubID | 23479 |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_04b1228dd6774bc9bc4fe788cb07c0a7 proquest_miscellaneous_2811939095 pubmed_primary_37161212 crossref_citationtrail_10_3934_mbe_2023376 crossref_primary_10_3934_mbe_2023376 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Mathematical biosciences and engineering : MBE |
| PublicationTitleAlternate | Math Biosci Eng |
| PublicationYear | 2023 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/mbe.2023376-30 key-10.3934/mbe.2023376-31 key-10.3934/mbe.2023376-32 key-10.3934/mbe.2023376-33 key-10.3934/mbe.2023376-27 key-10.3934/mbe.2023376-28 key-10.3934/mbe.2023376-29 key-10.3934/mbe.2023376-23 key-10.3934/mbe.2023376-24 key-10.3934/mbe.2023376-25 key-10.3934/mbe.2023376-26 key-10.3934/mbe.2023376-41 key-10.3934/mbe.2023376-42 key-10.3934/mbe.2023376-43 key-10.3934/mbe.2023376-44 key-10.3934/mbe.2023376-40 key-10.3934/mbe.2023376-38 key-10.3934/mbe.2023376-39 key-10.3934/mbe.2023376-9 key-10.3934/mbe.2023376-34 key-10.3934/mbe.2023376-35 key-10.3934/mbe.2023376-7 key-10.3934/mbe.2023376-36 key-10.3934/mbe.2023376-8 key-10.3934/mbe.2023376-37 key-10.3934/mbe.2023376-5 key-10.3934/mbe.2023376-6 key-10.3934/mbe.2023376-3 key-10.3934/mbe.2023376-4 key-10.3934/mbe.2023376-1 key-10.3934/mbe.2023376-2 key-10.3934/mbe.2023376-52 key-10.3934/mbe.2023376-10 key-10.3934/mbe.2023376-11 key-10.3934/mbe.2023376-50 key-10.3934/mbe.2023376-51 key-10.3934/mbe.2023376-49 key-10.3934/mbe.2023376-45 key-10.3934/mbe.2023376-46 key-10.3934/mbe.2023376-47 key-10.3934/mbe.2023376-48 key-10.3934/mbe.2023376-20 key-10.3934/mbe.2023376-21 key-10.3934/mbe.2023376-22 key-10.3934/mbe.2023376-16 key-10.3934/mbe.2023376-17 key-10.3934/mbe.2023376-18 key-10.3934/mbe.2023376-19 key-10.3934/mbe.2023376-12 key-10.3934/mbe.2023376-13 key-10.3934/mbe.2023376-14 key-10.3934/mbe.2023376-15 |
| References_xml | – ident: key-10.3934/mbe.2023376-18 doi: 10.1016/j.ymssp.2017.08.032 – ident: key-10.3934/mbe.2023376-29 doi: 10.1007/s11071-008-9363-1 – ident: key-10.3934/mbe.2023376-37 doi: 10.1109/TCSII.2021.3098820 – ident: key-10.3934/mbe.2023376-52 doi: 10.1016/j.automatica.2012.03.007 – ident: key-10.3934/mbe.2023376-7 – ident: key-10.3934/mbe.2023376-34 doi: 10.1109/TAC.2015.2396645 – ident: key-10.3934/mbe.2023376-12 doi: 10.1002/9781118122631 – ident: key-10.3934/mbe.2023376-36 doi: 10.1016/j.neunet.2022.09.021 – ident: key-10.3934/mbe.2023376-49 – ident: key-10.3934/mbe.2023376-50 – ident: key-10.3934/mbe.2023376-16 – ident: key-10.3934/mbe.2023376-31 – ident: key-10.3934/mbe.2023376-43 doi: 10.1016/j.automatica.2006.09.019 – ident: key-10.3934/mbe.2023376-11 – ident: key-10.3934/mbe.2023376-6 doi: 10.1007/s10010-011-0144-5 – ident: key-10.3934/mbe.2023376-44 doi: 10.1109/TSMCB.2010.2043839 – ident: key-10.3934/mbe.2023376-42 doi: 10.1109/TAC.2011.2166294 – ident: key-10.3934/mbe.2023376-26 doi: 10.1016/j.automatica.2016.05.003 – ident: key-10.3934/mbe.2023376-2 doi: 10.1002/9781119569145 – ident: key-10.3934/mbe.2023376-19 doi: 10.1016/j.ymssp.2016.01.004 – ident: key-10.3934/mbe.2023376-51 doi: 10.1016/j.automatica.2011.03.005 – ident: key-10.3934/mbe.2023376-46 doi: 10.1109/TAC.1971.1099755 – ident: key-10.3934/mbe.2023376-39 doi: 10.1109/TNNLS.2015.2416259 – ident: key-10.3934/mbe.2023376-3 – ident: key-10.3934/mbe.2023376-41 doi: 10.1002/9781118287422 – ident: key-10.3934/mbe.2023376-20 doi: 10.1016/j.automatica.2018.06.010 – ident: key-10.3934/mbe.2023376-4 doi: 10.1007/s11071-015-2252-5 – ident: key-10.3934/mbe.2023376-5 doi: 10.1007/s00170-016-8627-z – ident: key-10.3934/mbe.2023376-10 – ident: key-10.3934/mbe.2023376-25 doi: 10.1109/TNNLS.2017.2761718 – ident: key-10.3934/mbe.2023376-22 doi: 10.1049/iet-cta.2015.0977 – ident: key-10.3934/mbe.2023376-9 doi: 10.1002/9781118453988 – ident: key-10.3934/mbe.2023376-32 doi: 10.1109/TAC.2012.2220443 – ident: key-10.3934/mbe.2023376-47 – ident: key-10.3934/mbe.2023376-14 doi: 10.1007/s11071-020-05616-4 – ident: key-10.3934/mbe.2023376-24 – ident: key-10.3934/mbe.2023376-45 doi: 10.1007/978-1-4471-3037-6 – ident: key-10.3934/mbe.2023376-17 doi: 10.1109/TASE.2020.2996160 – ident: key-10.3934/mbe.2023376-15 doi: 10.1049/iet-its.2019.0404 – ident: key-10.3934/mbe.2023376-23 doi: 10.1109/TSMCC.2002.801727 – ident: key-10.3934/mbe.2023376-13 – ident: key-10.3934/mbe.2023376-8 – ident: key-10.3934/mbe.2023376-27 doi: 10.1016/j.mechatronics.2016.05.002 – ident: key-10.3934/mbe.2023376-38 – ident: key-10.3934/mbe.2023376-28 – ident: key-10.3934/mbe.2023376-40 – ident: key-10.3934/mbe.2023376-21 doi: 10.1016/j.mechatronics.2014.05.006 – ident: key-10.3934/mbe.2023376-33 doi: 10.1109/TFUZZ.2019.2914005 – ident: key-10.3934/mbe.2023376-30 doi: 10.1016/j.automatica.2016.05.008 – ident: key-10.3934/mbe.2023376-35 doi: 10.1109/TCYB.2021.3104178 – ident: key-10.3934/mbe.2023376-48 – ident: key-10.3934/mbe.2023376-1 |
| SSID | ssj0034334 |
| Score | 2.5662453 |
| Snippet | Hydraulic servo actuators (HSAs) are often used in the industry in tasks that request great power, high accuracy and dynamic motion. It is well known that an... |
| SourceID | doaj proquest pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source |
| StartPage | 8561 |
| SubjectTerms | adaptive dynamic programming data-driven control event-triggered control hydraulic servo actuator |
| Title | Data-driven control of hydraulic servo actuator: An event-triggered adaptive dynamic programming approach |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37161212 https://www.proquest.com/docview/2811939095 https://doaj.org/article/04b1228dd6774bc9bc4fe788cb07c0a7 |
| Volume | 20 |
| WOSCitedRecordID | wos000953160200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1551-0018 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034334 issn: 1551-0018 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC5ccWEvi7rr7viiBU8LwU53ku725hMPIh4U5haqH3EHNCNjRvDfW53ODB522cuSW2hIp6pS9VWn6iuAQ1UYWdnYsYxOZ5HQO9OVdJkUsnJNib70Pc_stbq50eOxuf0w6ivWhCV64CS4I17YXAjtfUVAxTpjXdEEytuc5cpx7PvIuTKLZCr5YFlIWaRuPGlkcfRkIyOmkDJSi3yIPz1N_9-xZR9jLtfh6wAO2Una1AashHYTPqdxkW_fYHKOHWZ-Fh0UG2rM2bRhv9_8DOePE8fiEeuUYWwKoVz6mJ20rGdoyjpKwh_iWE6GHp-ji2M-zaJnQ4XWE8UwtmAY_w73lxd3Z1fZMCohw1LyLkOhVBmMRm6UpYtXRjsnvS-RdCQa41QuAjYVGs0bggie542lyOSF09KWcgtW22kbfgJzXoRKBWvLEgslGlSuKnKBJGsCJ5aP4NdCgLUbeMTjOIvHmvKJKO2apF0P0h7B4XLxc6LP-POy06iJ5ZLIed3fIEuoB0uo_2UJIzhY6LGmbyT--MA2TOcvtdA54VRDaHIEP5KCl4-SlDDmFL-3_8cWduBLfKN0RLMLq91sHvZgzb12k5fZPnxSY73fG-o7Kc7uIQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+control+of+hydraulic+servo+actuator%3A+An+event-triggered+adaptive+dynamic+programming+approach&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Djordjevic%2C+Vladimir&rft.au=Tao%2C+Hongfeng&rft.au=Song%2C+Xiaona&rft.au=He%2C+Shuping&rft.date=2023-01-01&rft.issn=1551-0018&rft.eissn=1551-0018&rft.volume=20&rft.issue=5&rft.spage=8561&rft_id=info:doi/10.3934%2Fmbe.2023376&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon |