QML-IDS: Quantum Machine Learning Intrusion Detection System

The emergence of quantum computing and related technologies presents opportunities for enhancing network security. The transition towards quantum computational power paves the way for creating strategies to mitigate the constantly advancing threats to network integrity. In response to this technolog...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Abreu, Diego, Christian Esteve Rothenberg, Abelem, Antonio
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 07.10.2024
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The emergence of quantum computing and related technologies presents opportunities for enhancing network security. The transition towards quantum computational power paves the way for creating strategies to mitigate the constantly advancing threats to network integrity. In response to this technological advancement, our research presents QML-IDS, a novel Intrusion Detection System~(IDS) that combines quantum and classical computing techniques. QML-IDS employs Quantum Machine Learning~(QML) methodologies to analyze network patterns and detect attack activities. Through extensive experimental tests on publicly available datasets, we show that QML-IDS is effective at attack detection and performs well in binary and multiclass classification tasks. Our findings reveal that QML-IDS outperforms classical Machine Learning methods, demonstrating the promise of quantum-enhanced cybersecurity solutions for the age of quantum utility.
Bibliografia:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2410.16308