Analytic gradients in variational quantum algorithms: Algebraic extensions of the parameter-shift rule to general unitary transformations

Optimization of unitary transformations in Variational Quantum Algorithms benefits highly from efficient evaluation of cost function gradients with respect to amplitudes of unitary generators. We propose several extensions of the parametric-shift-rule to formulating these gradients as linear combina...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Izmaylov, Artur F, Lang, Robert A, Yen, Tzu-Ching
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 19.12.2021
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Optimization of unitary transformations in Variational Quantum Algorithms benefits highly from efficient evaluation of cost function gradients with respect to amplitudes of unitary generators. We propose several extensions of the parametric-shift-rule to formulating these gradients as linear combinations of expectation values for generators with general eigen-spectrum (i.e. with more than two eigenvalues). Our approaches are exact and do not use any auxiliary qubits, instead they rely on a generator eigen-spectrum analysis. Two main directions in the parametric-shift-rule extensions are 1) polynomial expansion of the exponential unitary operator based on a limited number of different eigenvalues in the generator and 2) decomposition of the generator as a linear combination of low-eigenvalue operators (e.g. operators with only 2 or 3 eigenvalues). These techniques have a range of scalings for the number of needed expectation values with the number of generator eigenvalues from quadratic (for polynomial expansion) to linear and even \(\log_2\) (for generator decompositions). This allowed us to propose efficient differentiation schemes superior to previous approaches for commonly used 2-qubit transformations (e.g. match-gates, transmon and fSim gates) and \(\hat S^2\)-conserving fermionic operators for the variational quantum eigensolver.
AbstractList Optimization of unitary transformations in Variational Quantum Algorithms benefits highly from efficient evaluation of cost function gradients with respect to amplitudes of unitary generators. We propose several extensions of the parametric-shift-rule to formulating these gradients as linear combinations of expectation values for generators with general eigen-spectrum (i.e. with more than two eigenvalues). Our approaches are exact and do not use any auxiliary qubits, instead they rely on a generator eigen-spectrum analysis. Two main directions in the parametric-shift-rule extensions are 1) polynomial expansion of the exponential unitary operator based on a limited number of different eigenvalues in the generator and 2) decomposition of the generator as a linear combination of low-eigenvalue operators (e.g. operators with only 2 or 3 eigenvalues). These techniques have a range of scalings for the number of needed expectation values with the number of generator eigenvalues from quadratic (for polynomial expansion) to linear and even \(\log_2\) (for generator decompositions). This allowed us to propose efficient differentiation schemes superior to previous approaches for commonly used 2-qubit transformations (e.g. match-gates, transmon and fSim gates) and \(\hat S^2\)-conserving fermionic operators for the variational quantum eigensolver.
Author Lang, Robert A
Izmaylov, Artur F
Yen, Tzu-Ching
Author_xml – sequence: 1
  givenname: Artur
  surname: Izmaylov
  middlename: F
  fullname: Izmaylov, Artur F
– sequence: 2
  givenname: Robert
  surname: Lang
  middlename: A
  fullname: Lang, Robert A
– sequence: 3
  givenname: Tzu-Ching
  surname: Yen
  fullname: Yen, Tzu-Ching
BookMark eNotUMluwjAUtKpWKqV8QG-Weg71EidObwh1k5B64Y5eyHMwSmywHQSf0L9uupzmMJtm7si18w4JeeBsnmul2BOEsz3NBWflnGku-RWZCCl5pnMhbsksxj1jTBSlUEpOyNfCQXdJdkvbAI1FlyK1jp4gWEjWjyQ9DuDS0FPoWh9s2vXxmS66FusAow3PCV0clZF6Q9MO6QEC9JgwZHFnTaJh6JAmT1t0GMa8wdkE4UJTABeND_1vUbwnNwa6iLN_nJL168t6-Z6tPt8-lotVBkpUWcOEaVSpc8arst5ybbbAsMplgSxv0EgmGuBQKt0YDryCutajT9UIhSq4kVPy-Bd7CP44YEybvR_CuDNufh6RVSVEJb8BMeBpnA
ContentType Paper
Copyright 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2107.08131
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a529-d02fd57840197bc18fca0e9436e04def302da1a758df1a19abb85295bea6561f3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:20:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a529-d02fd57840197bc18fca0e9436e04def302da1a758df1a19abb85295bea6561f3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2553399229?pq-origsite=%requestingapplication%
PQID 2553399229
PQPubID 2050157
ParticipantIDs proquest_journals_2553399229
PublicationCentury 2000
PublicationDate 20211219
PublicationDateYYYYMMDD 2021-12-19
PublicationDate_xml – month: 12
  year: 2021
  text: 20211219
  day: 19
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7796619
SecondaryResourceType preprint
Snippet Optimization of unitary transformations in Variational Quantum Algorithms benefits highly from efficient evaluation of cost function gradients with respect to...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Cost function
Decomposition
Eigenvalues
Generators
Mathematical analysis
Operators
Optimization
Polynomials
Qubits (quantum computing)
Spectrum analysis
Transformations (mathematics)
Title Analytic gradients in variational quantum algorithms: Algebraic extensions of the parameter-shift rule to general unitary transformations
URI https://www.proquest.com/docview/2553399229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oaOLJd3wg2YPXhW4ftOvFqIFooqRRDngi2-0ukACFPoj-BP-1s0tRTl48ts00zXT325lvJt8gdA03bd-nLpEQuxLXd1zCIHEmLQFwKSH-F8KIuD773W7Q77OwJNyysq1yjYkGqONEaI68CaGvY0RU2e18QfTUKF1dLUdobKOqVkmgpnXv7YdjsVu-NlsVM410V5OnH-NlA_IcvwGHYTlabhOCzbnS2f_vFx2gasjnMj1EW3J2hHZNP6fIjtGXERuBRYGHqWnqyjM8nuElZMYl-4cXBTi1mGI-GcJb89E0u8F3k6EuJIOZIcc1k5bhRGGIErEWCZ_q5hmSjcYqx2kxkThP8HAlXI0LAAeefuJ8IxQG8xPU67R7D4-knLpAuGczElu2imEbQ97F_EjQQAluSebCn7PcWCrHsmNOOaQZsaKcMh5FgS4WRpJDaEiVc4oqs2QmzxCWjmdJSEmilgA8FioQyqOKWnHL4yym3jmqrR07KHdONvj16sXfjy_Rnq37S6hNKKuhSp4W8grtiGU-ztI6qt63u-Fr3SwIuAqfXsL3b96qxNk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8MwDLZggODEW7zJAY6BJm3XBQkhxEMgxoTEDtymNE22SXtAH4P9BH4M_xEn24ATNw5cW6VKasv-PtuxAQ7wIY8iFlCN2JUGkR9QgcSZlhWaS434XynXxLUa1WqVpyfxMAUfk7swtqxyYhOdoU76ysbIjxH6-q6Jqjh7fqF2apTNrk5GaIzU4k4PX5GyZae3lyjfQ86vr-oXN3Q8VYDKkAuaeNwkqKbIK0QUK1YxSnpaBLgzL0i08T2eSCYRRieGSSZkHFdsMizWEqEPMz5-dhpmEEVw4SoFH79COrwc2V2OcqeuU9ixTN_agyOkVdER-t7xJLufFt-5sevFf_YDlmDmQT7rdBmmdG8F5ly1qspW4d21UkGVJ83UlazlGWn3yAB5_zi2SV4KVJmiS2SniYfIW93shJx3mjZNjstc6N_GCTPSNwQxMLEt0Lu2NIhmrbbJSVp0NMn7pDlqy00KNH0yHZL8B9DH5WtQ_4vDr0Op1-_pDSDaDz2NhCsuK_Q2ylSUCZlhXlIOpUhYuAk7Ezk2xnYha3wLcev31_swf1O_rzaqt7W7bVjgtpKGccrEDpTytNC7MKsGeTtL95wOEmj8scg_AVfnHes
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytic+gradients+in+variational+quantum+algorithms%3A+Algebraic+extensions+of+the+parameter-shift+rule+to+general+unitary+transformations&rft.jtitle=arXiv.org&rft.au=Izmaylov%2C+Artur+F&rft.au=Lang%2C+Robert+A&rft.au=Yen%2C+Tzu-Ching&rft.date=2021-12-19&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2107.08131