Subject-Independent Drowsiness Recognition from Single-Channel EEG with an Interpretable CNN-LSTM model

For EEG-based drowsiness recognition, it is desirable to use subject-independent recognition since conducting calibration on each subject is time-consuming. In this paper, we propose a novel Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) model for subject-independent drowsiness rec...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Cui, Jian, Zirui Lan, Zheng, Tianhu, Liu, Yisi, Sourina, Olga, Wang, Lipo, Müller-Wittig, Wolfgang
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 21.11.2021
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract For EEG-based drowsiness recognition, it is desirable to use subject-independent recognition since conducting calibration on each subject is time-consuming. In this paper, we propose a novel Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) model for subject-independent drowsiness recognition from single-channel EEG signals. Different from existing deep learning models that are mostly treated as black-box classifiers, the proposed model can explain its decisions for each input sample by revealing which parts of the sample contain important features identified by the model for classification. This is achieved by a visualization technique by taking advantage of the hidden states output by the LSTM layer. Results show that the model achieves an average accuracy of 72.97% on 11 subjects for leave-one-out subject-independent drowsiness recognition on a public dataset, which is higher than the conventional baseline methods of 55.42%-69.27%, and state-of-the-art deep learning methods. Visualization results show that the model has discovered meaningful patterns of EEG signals related to different mental states across different subjects.
AbstractList For EEG-based drowsiness recognition, it is desirable to use subject-independent recognition since conducting calibration on each subject is time-consuming. In this paper, we propose a novel Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) model for subject-independent drowsiness recognition from single-channel EEG signals. Different from existing deep learning models that are mostly treated as black-box classifiers, the proposed model can explain its decisions for each input sample by revealing which parts of the sample contain important features identified by the model for classification. This is achieved by a visualization technique by taking advantage of the hidden states output by the LSTM layer. Results show that the model achieves an average accuracy of 72.97% on 11 subjects for leave-one-out subject-independent drowsiness recognition on a public dataset, which is higher than the conventional baseline methods of 55.42%-69.27%, and state-of-the-art deep learning methods. Visualization results show that the model has discovered meaningful patterns of EEG signals related to different mental states across different subjects.
Author Wang, Lipo
Müller-Wittig, Wolfgang
Liu, Yisi
Sourina, Olga
Zheng, Tianhu
Cui, Jian
Zirui Lan
Author_xml – sequence: 1
  givenname: Jian
  surname: Cui
  fullname: Cui, Jian
– sequence: 2
  fullname: Zirui Lan
– sequence: 3
  givenname: Tianhu
  surname: Zheng
  fullname: Zheng, Tianhu
– sequence: 4
  givenname: Yisi
  surname: Liu
  fullname: Liu, Yisi
– sequence: 5
  givenname: Olga
  surname: Sourina
  fullname: Sourina, Olga
– sequence: 6
  givenname: Lipo
  surname: Wang
  fullname: Wang, Lipo
– sequence: 7
  givenname: Wolfgang
  surname: Müller-Wittig
  fullname: Müller-Wittig, Wolfgang
BookMark eNotj09PwjAchhujiYh8AG9NPBf7Z-22o5mIJIiJ7E667tcxMlpsO_HjS6KX97k9T947dO28A4QeGJ1nhZT0SYef_nvOGeNzRosyu0ITLgQjRcb5LZrFeKCUcpVzKcUEdduxOYBJZOVaOMFlXMIvwZ9j7yBG_AnGd65PvXfYBn_E2951A5Bqr52DAS8WS3zu0x5rh1cuQTgFSLoZAFebDVlv63d89C0M9-jG6iHC7J9TVL8u6uqNrD-Wq-p5TbTkJTFto40EmecguNV5W4IucpNLrVtbanG5YKRRVHKlbGYKywsBoKgQyoKxjZiixz_tKfivEWLaHfwY3KW444pxqZgQpfgF45ZbDA
ContentType Paper
Copyright 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2112.10894
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a529-cdbac5e577e32fa7d9ea87c75aadf9a3422c5c605266f4c8f283ee60336fecfb3
IEDL.DBID PIMPY
IngestDate Mon Jun 30 09:16:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a529-cdbac5e577e32fa7d9ea87c75aadf9a3422c5c605266f4c8f283ee60336fecfb3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/publiccontent/docview/2612561339?pq-origsite=%requestingapplication%
PQID 2612561339
PQPubID 2050157
ParticipantIDs proquest_journals_2612561339
PublicationCentury 2000
PublicationDate 20211121
PublicationDateYYYYMMDD 2021-11-21
PublicationDate_xml – month: 11
  year: 2021
  text: 20211121
  day: 21
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7768252
SecondaryResourceType preprint
Snippet For EEG-based drowsiness recognition, it is desirable to use subject-independent recognition since conducting calibration on each subject is time-consuming. In...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Artificial neural networks
Deep learning
Electroencephalography
Machine learning
Recognition
Sleepiness
Visualization
Title Subject-Independent Drowsiness Recognition from Single-Channel EEG with an Interpretable CNN-LSTM model
URI https://www.proquest.com/docview/2612561339
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na8IwGA6bbrDTvtmHkxx2zbRNmjSnwZxughZRGe4kaZoMQaqrTvbzl7dWhR122jlQQmie9yPP-zwI3bOQy5gyRjyeWMJcgCRSOzBkccK1slTR3O7trSOiKByNZK8Yj14UtMoNJuZAvVZ7Bt62A-FaMtPQMa-B8BWkvlQ-zj8JeEjBW2thqLGPyiC8VS-hcq_d7b1vey4-Fy6DpuvHzVzKq6ay78nqwVVBPrDtwLr4FyTncaZ1_L87PHE7U3OTnaI9k56hw5ztqRfn6MPBBfRfSHtrgrvEz64gX5PgcX_DKpqlGOZP8MAFuKkhMIqQmiluNl8wNHCxSvGOtRhPDW5EEekMhl2cO-xcoGGrOWy8ksJxgajAl0QnsdKBCYQw1LdKJNKoUGgRKJVYqSjzfR1oDhIx3DIdWpebGMPrlHJrtI3pJSqls9RcIRxywaQJYyGox-Dj2sXKhBkmLeeuhLxGlc0hjotbsxjvzuzm7-VbdOQDt8TziO9VUGmZfZk7dKBXy8kiq6LyUzPq9avA4xxUi5_gBwQGweU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V09T8MwED1BAcHEt_go4AFGA7EdOx4QAxSoaKMKKgRT5Tg2qlSlkBYKP4r_iJ02IDGwMTBHsmTf5Z7v_O4ewD6LuEwoYzjgqcXMASSW2gVDlqRcK0sVLeTe7hoijqP7e9mago-yF8bTKsuYWATqtK99jfzIj7ryl10qT5-esVeN8q-rpYTG2C2uzfvIpWyDk_q5s-8BIRe19tkVnqgKYBUSiXWaKB2aUAhDiVUilUZFQotQqdRKRRkhOtTcj0HhlunIOvw1hh9Tyq3RNqFu2WmYYc7Xjysw06o3Ww9fRR3Chbui0_HraTEr7Ejlb93XQ5dmEU_n89rIP2J-AWQXi__sCJbc1tWTyZdhymQrMFfwVfVgFR5dwPMVJFz_kvEdovO8PxrT-NFNyYvqZ8h30KBbB9E9g30zRWZ6qFa7RL4EjVSGvnmXSc-gszjGjdt2ExUaQWvQ_outrUMl62dmA1DEBZMmSoSgAfOLa4f2KTNMWs5dErwJ1dJKncl_P-h8m2jr9897MH_VbjY6jXp8vQ0LxDNlggCToAqVYf5idmBWvw67g3x34mMIOn9s0k9s_RK7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Independent+Drowsiness+Recognition+from+Single-Channel+EEG+with+an+Interpretable+CNN-LSTM+model&rft.jtitle=arXiv.org&rft.au=Cui%2C+Jian&rft.au=Zirui+Lan&rft.au=Zheng%2C+Tianhu&rft.au=Liu%2C+Yisi&rft.date=2021-11-21&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2112.10894