Subject-Independent Drowsiness Recognition from Single-Channel EEG with an Interpretable CNN-LSTM model
For EEG-based drowsiness recognition, it is desirable to use subject-independent recognition since conducting calibration on each subject is time-consuming. In this paper, we propose a novel Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) model for subject-independent drowsiness rec...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
21.11.2021
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | For EEG-based drowsiness recognition, it is desirable to use subject-independent recognition since conducting calibration on each subject is time-consuming. In this paper, we propose a novel Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) model for subject-independent drowsiness recognition from single-channel EEG signals. Different from existing deep learning models that are mostly treated as black-box classifiers, the proposed model can explain its decisions for each input sample by revealing which parts of the sample contain important features identified by the model for classification. This is achieved by a visualization technique by taking advantage of the hidden states output by the LSTM layer. Results show that the model achieves an average accuracy of 72.97% on 11 subjects for leave-one-out subject-independent drowsiness recognition on a public dataset, which is higher than the conventional baseline methods of 55.42%-69.27%, and state-of-the-art deep learning methods. Visualization results show that the model has discovered meaningful patterns of EEG signals related to different mental states across different subjects. |
|---|---|
| AbstractList | For EEG-based drowsiness recognition, it is desirable to use subject-independent recognition since conducting calibration on each subject is time-consuming. In this paper, we propose a novel Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) model for subject-independent drowsiness recognition from single-channel EEG signals. Different from existing deep learning models that are mostly treated as black-box classifiers, the proposed model can explain its decisions for each input sample by revealing which parts of the sample contain important features identified by the model for classification. This is achieved by a visualization technique by taking advantage of the hidden states output by the LSTM layer. Results show that the model achieves an average accuracy of 72.97% on 11 subjects for leave-one-out subject-independent drowsiness recognition on a public dataset, which is higher than the conventional baseline methods of 55.42%-69.27%, and state-of-the-art deep learning methods. Visualization results show that the model has discovered meaningful patterns of EEG signals related to different mental states across different subjects. |
| Author | Wang, Lipo Müller-Wittig, Wolfgang Liu, Yisi Sourina, Olga Zheng, Tianhu Cui, Jian Zirui Lan |
| Author_xml | – sequence: 1 givenname: Jian surname: Cui fullname: Cui, Jian – sequence: 2 fullname: Zirui Lan – sequence: 3 givenname: Tianhu surname: Zheng fullname: Zheng, Tianhu – sequence: 4 givenname: Yisi surname: Liu fullname: Liu, Yisi – sequence: 5 givenname: Olga surname: Sourina fullname: Sourina, Olga – sequence: 6 givenname: Lipo surname: Wang fullname: Wang, Lipo – sequence: 7 givenname: Wolfgang surname: Müller-Wittig fullname: Müller-Wittig, Wolfgang |
| BookMark | eNotj09PwjAchhujiYh8AG9NPBf7Z-22o5mIJIiJ7E667tcxMlpsO_HjS6KX97k9T947dO28A4QeGJ1nhZT0SYef_nvOGeNzRosyu0ITLgQjRcb5LZrFeKCUcpVzKcUEdduxOYBJZOVaOMFlXMIvwZ9j7yBG_AnGd65PvXfYBn_E2951A5Bqr52DAS8WS3zu0x5rh1cuQTgFSLoZAFebDVlv63d89C0M9-jG6iHC7J9TVL8u6uqNrD-Wq-p5TbTkJTFto40EmecguNV5W4IucpNLrVtbanG5YKRRVHKlbGYKywsBoKgQyoKxjZiixz_tKfivEWLaHfwY3KW444pxqZgQpfgF45ZbDA |
| ContentType | Paper |
| Copyright | 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2112.10894 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a529-cdbac5e577e32fa7d9ea87c75aadf9a3422c5c605266f4c8f283ee60336fecfb3 |
| IEDL.DBID | PIMPY |
| IngestDate | Mon Jun 30 09:16:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a529-cdbac5e577e32fa7d9ea87c75aadf9a3422c5c605266f4c8f283ee60336fecfb3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2612561339?pq-origsite=%requestingapplication% |
| PQID | 2612561339 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2612561339 |
| PublicationCentury | 2000 |
| PublicationDate | 20211121 |
| PublicationDateYYYYMMDD | 2021-11-21 |
| PublicationDate_xml | – month: 11 year: 2021 text: 20211121 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2021 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7768252 |
| SecondaryResourceType | preprint |
| Snippet | For EEG-based drowsiness recognition, it is desirable to use subject-independent recognition since conducting calibration on each subject is time-consuming. In... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Artificial neural networks Deep learning Electroencephalography Machine learning Recognition Sleepiness Visualization |
| Title | Subject-Independent Drowsiness Recognition from Single-Channel EEG with an Interpretable CNN-LSTM model |
| URI | https://www.proquest.com/docview/2612561339 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na8IwGA6bbrDTvtmHkxx2zbRNmjSnwZxughZRGe4kaZoMQaqrTvbzl7dWhR122jlQQmie9yPP-zwI3bOQy5gyRjyeWMJcgCRSOzBkccK1slTR3O7trSOiKByNZK8Yj14UtMoNJuZAvVZ7Bt62A-FaMtPQMa-B8BWkvlQ-zj8JeEjBW2thqLGPyiC8VS-hcq_d7b1vey4-Fy6DpuvHzVzKq6ay78nqwVVBPrDtwLr4FyTncaZ1_L87PHE7U3OTnaI9k56hw5ztqRfn6MPBBfRfSHtrgrvEz64gX5PgcX_DKpqlGOZP8MAFuKkhMIqQmiluNl8wNHCxSvGOtRhPDW5EEekMhl2cO-xcoGGrOWy8ksJxgajAl0QnsdKBCYQw1LdKJNKoUGgRKJVYqSjzfR1oDhIx3DIdWpebGMPrlHJrtI3pJSqls9RcIRxywaQJYyGox-Dj2sXKhBkmLeeuhLxGlc0hjotbsxjvzuzm7-VbdOQDt8TziO9VUGmZfZk7dKBXy8kiq6LyUzPq9avA4xxUi5_gBwQGweU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V09T8MwED1BAcHEt_go4AFGA7EdOx4QAxSoaKMKKgRT5Tg2qlSlkBYKP4r_iJ02IDGwMTBHsmTf5Z7v_O4ewD6LuEwoYzjgqcXMASSW2gVDlqRcK0sVLeTe7hoijqP7e9mago-yF8bTKsuYWATqtK99jfzIj7ryl10qT5-esVeN8q-rpYTG2C2uzfvIpWyDk_q5s-8BIRe19tkVnqgKYBUSiXWaKB2aUAhDiVUilUZFQotQqdRKRRkhOtTcj0HhlunIOvw1hh9Tyq3RNqFu2WmYYc7Xjysw06o3Ww9fRR3Chbui0_HraTEr7Ejlb93XQ5dmEU_n89rIP2J-AWQXi__sCJbc1tWTyZdhymQrMFfwVfVgFR5dwPMVJFz_kvEdovO8PxrT-NFNyYvqZ8h30KBbB9E9g30zRWZ6qFa7RL4EjVSGvnmXSc-gszjGjdt2ExUaQWvQ_outrUMl62dmA1DEBZMmSoSgAfOLa4f2KTNMWs5dErwJ1dJKncl_P-h8m2jr9897MH_VbjY6jXp8vQ0LxDNlggCToAqVYf5idmBWvw67g3x34mMIOn9s0k9s_RK7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Independent+Drowsiness+Recognition+from+Single-Channel+EEG+with+an+Interpretable+CNN-LSTM+model&rft.jtitle=arXiv.org&rft.au=Cui%2C+Jian&rft.au=Zirui+Lan&rft.au=Zheng%2C+Tianhu&rft.au=Liu%2C+Yisi&rft.date=2021-11-21&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2112.10894 |