Regularized Unconstrained Weakly Submodular Maximization
Submodular optimization finds applications in machine learning and data mining. In this paper, we study the problem of maximizing functions of the form \(h = f-c\), where \(f\) is a monotone, non-negative, weakly submodular set function and \(c\) is a modular function. We design a deterministic appr...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
19.08.2024
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Submodular optimization finds applications in machine learning and data mining. In this paper, we study the problem of maximizing functions of the form \(h = f-c\), where \(f\) is a monotone, non-negative, weakly submodular set function and \(c\) is a modular function. We design a deterministic approximation algorithm that runs with \({{O}}(\frac{n}{\epsilon}\log \frac{n}{\gamma \epsilon})\) oracle calls to function \(h\), and outputs a set \({S}\) such that \(h({S}) \geq \gamma(1-\epsilon)f(OPT)-c(OPT)-\frac{c(OPT)}{\gamma(1-\epsilon)}\log\frac{f(OPT)}{c(OPT)}\), where \(\gamma\) is the submodularity ratio of \(f\). Existing algorithms for this problem either admit a worse approximation ratio or have quadratic runtime. We also present an approximation ratio of our algorithm for this problem with an approximate oracle of \(f\). We validate our theoretical results through extensive empirical evaluations on real-world applications, including vertex cover and influence diffusion problems for submodular utility function \(f\), and Bayesian A-Optimal design for weakly submodular \(f\). Our experimental results demonstrate that our algorithms efficiently achieve high-quality solutions. |
|---|---|
| AbstractList | Submodular optimization finds applications in machine learning and data mining. In this paper, we study the problem of maximizing functions of the form \(h = f-c\), where \(f\) is a monotone, non-negative, weakly submodular set function and \(c\) is a modular function. We design a deterministic approximation algorithm that runs with \({{O}}(\frac{n}{\epsilon}\log \frac{n}{\gamma \epsilon})\) oracle calls to function \(h\), and outputs a set \({S}\) such that \(h({S}) \geq \gamma(1-\epsilon)f(OPT)-c(OPT)-\frac{c(OPT)}{\gamma(1-\epsilon)}\log\frac{f(OPT)}{c(OPT)}\), where \(\gamma\) is the submodularity ratio of \(f\). Existing algorithms for this problem either admit a worse approximation ratio or have quadratic runtime. We also present an approximation ratio of our algorithm for this problem with an approximate oracle of \(f\). We validate our theoretical results through extensive empirical evaluations on real-world applications, including vertex cover and influence diffusion problems for submodular utility function \(f\), and Bayesian A-Optimal design for weakly submodular \(f\). Our experimental results demonstrate that our algorithms efficiently achieve high-quality solutions. |
| Author | Pavan, A Basu, Samik Zhu, Yanhui |
| Author_xml | – sequence: 1 givenname: Yanhui surname: Zhu fullname: Zhu, Yanhui – sequence: 2 givenname: Samik surname: Basu fullname: Basu, Samik – sequence: 3 givenname: A surname: Pavan fullname: Pavan, A |
| BookMark | eNotjs1KAzEYRYMoWGsfwN2A6xm_5EtmkqUUtUKLoBWXJZMfSZ0mOj9S-_SO2NXlwuGee0FOY4qOkCsKBZdCwI1u9-G7YBxkAbxkcEImDJHmkjN2TmZdtwUAVlZMCJwQ-ezeh0a34eBs9hpNil3f6hDH9ub0R_OTvQz1Ltk_JlvpfdiFg-5DipfkzOumc7NjTsn6_m49X-TLp4fH-e0y14Kp3NRggGkJpnLCGobSW6S1l5Qj1qhq600JylJVKg6-1BYrRj1w4ceXHHBKrv9nP9v0Nbiu32zT0MbRuEFQFKigXOEv9UJJ2Q |
| ContentType | Paper |
| Copyright | 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2408.04620 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a529-cb0c02a80c7e5dc238fd31bf81433b39bdfc609d196940f6ad3721f045f000403 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:16:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a529-cb0c02a80c7e5dc238fd31bf81433b39bdfc609d196940f6ad3721f045f000403 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/3091015149?pq-origsite=%requestingapplication% |
| PQID | 3091015149 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_3091015149 |
| PublicationCentury | 2000 |
| PublicationDate | 20240819 |
| PublicationDateYYYYMMDD | 2024-08-19 |
| PublicationDate_xml | – month: 08 year: 2024 text: 20240819 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2024 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8800869 |
| SecondaryResourceType | preprint |
| Snippet | Submodular optimization finds applications in machine learning and data mining. In this paper, we study the problem of maximizing functions of the form \(h =... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Approximation Data mining Machine learning Maximization Optimization |
| Title | Regularized Unconstrained Weakly Submodular Maximization |
| URI | https://www.proquest.com/docview/3091015149 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60VfDkGx-17MHrttnNvnISlBYFW5ZatZ5KnrBot3W3luqvN4lbPQhePA7JIUzCzDePzAdwThkngQylm9CIuIH0iMtIoEOVIAy5fiOCWC6Ch9u4309GI5JWCbeyaqtc2URrqMWUmxx5GxvHpt1TQC5mr65hjTLV1YpCYx3qZkqCZ1v37r5zLH4Ua8SMv4qZdnRXmxbLbNEyc71a5lsm-mWCrV_pbv_3RDtQT-lMFruwJvM92LT9nLzch2RgOeaL7EMK5z7nBgUaMggtPUr6_PLuaIsxmQqzx-nRZTap_mMewLDbGV5duxVJgktDn7icIY58miAey1Bw7YCVwB5TicZBmGHChOIRIsJMwQmQiqjAOuZTGsgpA-cQPoRaPs3lEThc6liPykTRMA4SihiNFMWUhAILjZriY2is9DCuHno5_lHCyd_Lp7Dlazxg0rEeaUBtXrzJM9jgi3lWFk2oX3b66aBp709L6U0vffoEWQulyA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gaPTkOz5Qe9BjoXT72oPxoBIIjxBF5dZsd7emUQpSRPA_-R-drVQPJt44eGy2aTaz05lvZmfmAzhlAaeWtKXuMYfqlqxQPaAWhiqWbXPUEUFTLoL7pttue70e7eTgI-uFUWWVmU1MDbUYcJUjLxPl2NA9WfRi-KIr1ih1u5pRaHypRUPO3jBkS87rV3i-Z6ZZve5e1vQ5q4DObJPqPDC4YTLP4K60BUePFQpSCUIPgQMJCA1EyB2DCjU2xjJChwmCQVKIyCdU-Mcg-NklKCCKMGlaKXj7ndIxHRcBOvm6O00nhZXZaBpNSmqMWEl1gRq_LH7qxqrr_0wAG1DosKEcbUJOxluwklar8mQbvBv5qMpno3cptLuYK4yrqC7w6UGyp-eZhvawPxDqHa3FplF_3m26A91F7HUX8vEglnugcYmRLJNeyGzX8pgRMCdkhFFbEIGY0N2HYiZ2f_4bJ_6PzA_-Xj6B1Vq31fSb9XbjENZMRD4q8VyhRciPR6_yCJb5ZBwlo-NUZTTwF3xCn-MG_N8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularized+Unconstrained+Weakly+Submodular+Maximization&rft.jtitle=arXiv.org&rft.au=Zhu%2C+Yanhui&rft.au=Basu%2C+Samik&rft.au=Pavan%2C+A&rft.date=2024-08-19&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2408.04620 |