Deep Learning of Nonnegativity-Constrained Autoencoders for Enhanced Understanding of Data
Unsupervised feature extractors are known to perform an efficient and discriminative representation of data. Insight into the mappings they perform and human ability to understand them, however, remain very limited. This is especially prominent when multilayer deep learning architectures are used. T...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
25.12.2018
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Unsupervised feature extractors are known to perform an efficient and discriminative representation of data. Insight into the mappings they perform and human ability to understand them, however, remain very limited. This is especially prominent when multilayer deep learning architectures are used. This paper demonstrates how to remove these bottlenecks within the architecture of Nonnegativity Constrained Autoencoder (NCSAE). It is shown that by using both L1 and L2 regularization that induce nonnegativity of weights, most of the weights in the network become constrained to be nonnegative thereby resulting into a more understandable structure with minute deterioration in classification accuracy. Also, this proposed approach extracts features that are more sparse and produces additional output layer sparsification. The method is analyzed for accuracy and feature interpretation on the MNIST data, the NORB normalized uniform object data, and the Reuters text categorization dataset. |
|---|---|
| AbstractList | Unsupervised feature extractors are known to perform an efficient and discriminative representation of data. Insight into the mappings they perform and human ability to understand them, however, remain very limited. This is especially prominent when multilayer deep learning architectures are used. This paper demonstrates how to remove these bottlenecks within the architecture of Nonnegativity Constrained Autoencoder (NCSAE). It is shown that by using both L1 and L2 regularization that induce nonnegativity of weights, most of the weights in the network become constrained to be nonnegative thereby resulting into a more understandable structure with minute deterioration in classification accuracy. Also, this proposed approach extracts features that are more sparse and produces additional output layer sparsification. The method is analyzed for accuracy and feature interpretation on the MNIST data, the NORB normalized uniform object data, and the Reuters text categorization dataset. |
| Author | Zurada, Jacek M Ayinde, Babajide O |
| Author_xml | – sequence: 1 givenname: Babajide surname: Ayinde middlename: O fullname: Ayinde, Babajide O – sequence: 2 givenname: Jacek surname: Zurada middlename: M fullname: Zurada, Jacek M |
| BookMark | eNotTsFOwzAUixBIjLEP4FaJc0eS1zTpcdrGQKrgMi5cpjR9GZ3Qy0jTCf6eIuaLJduyfcMuKRAydif4vDBK8Qcbv7vTXBgu53wEXLCJBBC5KaS8ZrO-P4yqLLVUCibsfYV4zGq0kTraZ8FnL4EI9zZ1py795MtAfYq2I2yzxZACkgstxj7zIWZr-rDkRueN_rRkqT2XrGyyt-zK288eZ2eesu3jert8yuvXzfNyUedWySq3TcVboT1oVxYNFKYplGkRwZvGCyVhDIz_eQOl0rp12jUctROVRa_RaZiy-__aYwxfA_ZpdwhDpHFxJ7kWIDiYCn4B-aVWmg |
| ContentType | Paper |
| Copyright | 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.1802.00003 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a529-ab90d17f37c64b348b458dee3f8bf1523ab92330b36577dc7cb0e7c19aef7ec73 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:39:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a529-ab90d17f37c64b348b458dee3f8bf1523ab92330b36577dc7cb0e7c19aef7ec73 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2071310389?pq-origsite=%requestingapplication% |
| PQID | 2071310389 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2071310389 |
| PublicationCentury | 2000 |
| PublicationDate | 20181225 |
| PublicationDateYYYYMMDD | 2018-12-25 |
| PublicationDate_xml | – month: 12 year: 2018 text: 20181225 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2018 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.6748518 |
| SecondaryResourceType | preprint |
| Snippet | Unsupervised feature extractors are known to perform an efficient and discriminative representation of data. Insight into the mappings they perform and human... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Deep learning Feature extraction Human performance Multilayers Regularization |
| Title | Deep Learning of Nonnegativity-Constrained Autoencoders for Enhanced Understanding of Data |
| URI | https://www.proquest.com/docview/2071310389 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8MgGCW6aeLJ3_HHXDh4RdvSFjgZdVv0YNPoTKaXBShsu7Sz7Rb_fAE7NTHx4pFACIH0-x4fr-8BcO5pg2mlJ1GIwwyFXGMkJOFIxzwWmBArAubMJkiS0NGIpU3BrWpolauY6AJ1VkhbI7eVEN96YlF2NX9D1jXKvq42FhrroG1VEnxH3Xv6qrEEMTGIGX8-Zjrprktevs-WF1b2zCkX4l8h2OWVwfZ_V7QD2imfq3IXrKl8D2w6Pqes9sFrT6k5bMRTJ7DQMLGMlkljFoGsT6dzh1AZvF7UhZWztJRmaDAs7OdTxwuAzz__fLGT9HjND8Bw0B_e3qHGRgHxKGCIC-ZlPtGYyDgUOKQijGimFNZUaJO9sRkQYOwJHEeEZJJI4SkifcaVJkoSfAhaeZGrIwC1SfcyZNSJ-pibnFDEwEfJmJlRUU8cg85qp8bNp1CNv7fp5O_uU7Bl0Ai1XJEg6oBWXS7UGdiQy3pWlV3Qvukn6WPXnbBppfcP6csHOLmxjg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTgIxFL1B0OjKd3ygdqHL6jCdmU4XxhiBQEBCIibEDWk7LbIB5KV-lP9oWxg1MXHHwvVMmszc9vbc29NzAM49bTCt9CQOSJDggGuChaQc64hHglBqRcCc2QRtNOJ2mzUz8JHehbG0yjQnukSdDKTtkdtOSMF6YsXsZviCrWuUPV1NLTTm06Km3l9NyTa-rhZNfC98v1xq3VXwwlUA89BnmAvmJQWqCZVRIEgQiyCME6WIjoU2mxkxL_imyBckCilNJJXCU1QWGFeaKkmJGXYFcgZF-MwxBR--Wjp-RA1AJ_OzU6cUdsVHb73ZpVVZc0KJ5FfGd9tYefOf_YAtyDX5UI22IaP6O7Dm2KpyvAtPRaWGaCEN20UDjRqWr9NdWGFg60LqvC9Ugm6nk4EV67SEbWQQOir1nx3rAT3-vNdjBynyCd-D1jK-Zh-y_UFfHQDSBszIgMVOssjUqUJRA44lY2ZEFXviEPJpYDqLhT7ufEfl6O_HZ7Bead3XO_Vqo3YMGwZ3xZYV44d5yE5GU3UCq3I26Y1Hp25SIegsOYafo1ILXQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+of+Nonnegativity-Constrained+Autoencoders+for+Enhanced+Understanding+of+Data&rft.jtitle=arXiv.org&rft.au=Ayinde%2C+Babajide+O&rft.au=Zurada%2C+Jacek+M&rft.date=2018-12-25&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1802.00003 |