Warm-starting quantum optimization
There is an increasing interest in quantum algorithms for problems of integer programming and combinatorial optimization. Classical solvers for such problems employ relaxations, which replace binary variables with continuous ones, for instance in the form of higher-dimensional matrix-valued problems...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
16.06.2021
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | There is an increasing interest in quantum algorithms for problems of integer programming and combinatorial optimization. Classical solvers for such problems employ relaxations, which replace binary variables with continuous ones, for instance in the form of higher-dimensional matrix-valued problems (semidefinite programming). Under the Unique Games Conjecture, these relaxations often provide the best performance ratios available classically in polynomial time. Here, we discuss how to warm-start quantum optimization with an initial state corresponding to the solution of a relaxation of a combinatorial optimization problem and how to analyze properties of the associated quantum algorithms. In particular, this allows the quantum algorithm to inherit the performance guarantees of the classical algorithm. We illustrate this in the context of portfolio optimization, where our results indicate that warm-starting the Quantum Approximate Optimization Algorithm (QAOA) is particularly beneficial at low depth. Likewise, Recursive QAOA for MAXCUT problems shows a systematic increase in the size of the obtained cut for fully connected graphs with random weights, when Goemans-Williamson randomized rounding is utilized in a warm start. It is straightforward to apply the same ideas to other randomized-rounding schemes and optimization problems. |
|---|---|
| AbstractList | There is an increasing interest in quantum algorithms for problems of integer programming and combinatorial optimization. Classical solvers for such problems employ relaxations, which replace binary variables with continuous ones, for instance in the form of higher-dimensional matrix-valued problems (semidefinite programming). Under the Unique Games Conjecture, these relaxations often provide the best performance ratios available classically in polynomial time. Here, we discuss how to warm-start quantum optimization with an initial state corresponding to the solution of a relaxation of a combinatorial optimization problem and how to analyze properties of the associated quantum algorithms. In particular, this allows the quantum algorithm to inherit the performance guarantees of the classical algorithm. We illustrate this in the context of portfolio optimization, where our results indicate that warm-starting the Quantum Approximate Optimization Algorithm (QAOA) is particularly beneficial at low depth. Likewise, Recursive QAOA for MAXCUT problems shows a systematic increase in the size of the obtained cut for fully connected graphs with random weights, when Goemans-Williamson randomized rounding is utilized in a warm start. It is straightforward to apply the same ideas to other randomized-rounding schemes and optimization problems. |
| Author | Egger, Daniel J Marecek, Jakub Woerner, Stefan |
| Author_xml | – sequence: 1 givenname: Daniel surname: Egger middlename: J fullname: Egger, Daniel J – sequence: 2 givenname: Jakub surname: Marecek fullname: Marecek, Jakub – sequence: 3 givenname: Stefan surname: Woerner fullname: Woerner, Stefan |
| BookMark | eNotjU1LAzEUAIMoWGt_gLei56zJS7Kbd5TiFxQ8KHgsL9tEUtyk3WRF_PUW9DJzm7lgpyknz9iVFI22xohbGr_jVwNCYCOPMCdsBkpJbjXAOVuUshNCQNuBMWrGrt9pHHipNNaYPpaHiVKdhmXe1zjEH6oxp0t2Fuiz-MW_5-z14f5t9cTXL4_Pq7s1JwPIsQPyWwui7QI5HzSSUq1UJHpqnXOEVjlLIWyBZBDaQ-9tb1Ci0-CDmrObv-p-zIfJl7rZ5WlMx-EGtDYSARHVL7y_Qso |
| ContentType | Paper |
| Copyright | 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2009.10095 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a529-972aed82067fabef49a33613a0ca6bbba983b8affd2a1f04e2ce8c5919b42ef3 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 08:39:39 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a529-972aed82067fabef49a33613a0ca6bbba983b8affd2a1f04e2ce8c5919b42ef3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2445192999?pq-origsite=%requestingapplication% |
| PQID | 2445192999 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2445192999 |
| PublicationCentury | 2000 |
| PublicationDate | 20210616 |
| PublicationDateYYYYMMDD | 2021-06-16 |
| PublicationDate_xml | – month: 06 year: 2021 text: 20210616 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2021 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7612725 |
| SecondaryResourceType | preprint |
| Snippet | There is an increasing interest in quantum algorithms for problems of integer programming and combinatorial optimization. Classical solvers for such problems... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Combinatorial analysis Continuity (mathematics) Games Mathematical analysis Matrix methods Optimization Polynomials Rounding Semidefinite programming Solvers |
| Title | Warm-starting quantum optimization |
| URI | https://www.proquest.com/docview/2445192999 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEB20VfDkN1VrKeI1dJPdbTYnQWlR0LJY0Xoqk2wiPfRrty3-fJN0qwfBi8eQSyYJ7w2TyXsA1xmX1PKiIU4cjkRcJSSJOZJMCU0DkVDtRX1eH3mvlwwGIi0LbkXZVrnBRA_U2VS5GnmLOSUty-VC3MzmxLlGudfV0kJjG6pOJYH61r3-d42FtbnNmMP1Y6aX7mph_jlarWUqqUsvfkGw55Xu_n9XdADVFGc6P4QtPTmCXd_PqYpjuHrDfExs5udEAj6a86XdwOW4ObUAMS5_Xp5Av9t5ubsnpR0CwZgJIjhDnXm5dYNSm0hgGFoyxkBhW0qJIgllgsZkDKkJIs2UTlQsqJAR0yY8hcpkOtE1aCoMTWhpXwc2m6IaUYoocx4csdDIOD-D-ibgYXmji-FPtOd_T1_AHnN9H87fp12HyiJf6kvYUavFqMgbUL3t9NLnhj8oO0ofntL3LxoZniU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ4gaPTkOz5QN0aPDbvdXbo9GA8qgYCEBKKcJLPd1nDgtQuo_8kfabuwejDxxsFzk6aP6czXdub7AK4iFjo6LipiyOGIx0RAAp8hiQSXjs0DR6akPk8N1mwG3S5v5eAzq4UxaZWZT0wddTQS5o28RA2Tlo7lnN-OJ8SoRpnf1UxCY2EWdfnxpq9syU3tXu_vNaWVh85dlSxVBQj6lBPOKMooZS1XGErlcXRdHdPQFlgOwxB54IYBKhVRdJTtSSpkIHzu8NCjUrm61zUoaBBBeZoo2P5-0aFlpvG5u_g6TYnCShi_9-cLUkzHgJlfDj-NYpXt_zX_HSi0cCzjXcjJ4R5spLmqItmHy2eMB0SjWkOA8GpNZto4ZgNrpJ3fYFlVegDtFQzqEPLD0VAegSXQVa6GNNLWSNGRiCH3IqMv4nOJlLFjKGbL21ue1qT3s7YnfzdfwGa189joNWrN-ilsUZPfYnSMykXIT-OZPIN1MZ_2k_g8NQ0LXla7E1-TP_jM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Warm-starting+quantum+optimization&rft.jtitle=arXiv.org&rft.au=Egger%2C+Daniel+J&rft.au=Marecek%2C+Jakub&rft.au=Woerner%2C+Stefan&rft.date=2021-06-16&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2009.10095 |