Warm-starting quantum optimization

There is an increasing interest in quantum algorithms for problems of integer programming and combinatorial optimization. Classical solvers for such problems employ relaxations, which replace binary variables with continuous ones, for instance in the form of higher-dimensional matrix-valued problems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Egger, Daniel J, Marecek, Jakub, Woerner, Stefan
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 16.06.2021
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract There is an increasing interest in quantum algorithms for problems of integer programming and combinatorial optimization. Classical solvers for such problems employ relaxations, which replace binary variables with continuous ones, for instance in the form of higher-dimensional matrix-valued problems (semidefinite programming). Under the Unique Games Conjecture, these relaxations often provide the best performance ratios available classically in polynomial time. Here, we discuss how to warm-start quantum optimization with an initial state corresponding to the solution of a relaxation of a combinatorial optimization problem and how to analyze properties of the associated quantum algorithms. In particular, this allows the quantum algorithm to inherit the performance guarantees of the classical algorithm. We illustrate this in the context of portfolio optimization, where our results indicate that warm-starting the Quantum Approximate Optimization Algorithm (QAOA) is particularly beneficial at low depth. Likewise, Recursive QAOA for MAXCUT problems shows a systematic increase in the size of the obtained cut for fully connected graphs with random weights, when Goemans-Williamson randomized rounding is utilized in a warm start. It is straightforward to apply the same ideas to other randomized-rounding schemes and optimization problems.
AbstractList There is an increasing interest in quantum algorithms for problems of integer programming and combinatorial optimization. Classical solvers for such problems employ relaxations, which replace binary variables with continuous ones, for instance in the form of higher-dimensional matrix-valued problems (semidefinite programming). Under the Unique Games Conjecture, these relaxations often provide the best performance ratios available classically in polynomial time. Here, we discuss how to warm-start quantum optimization with an initial state corresponding to the solution of a relaxation of a combinatorial optimization problem and how to analyze properties of the associated quantum algorithms. In particular, this allows the quantum algorithm to inherit the performance guarantees of the classical algorithm. We illustrate this in the context of portfolio optimization, where our results indicate that warm-starting the Quantum Approximate Optimization Algorithm (QAOA) is particularly beneficial at low depth. Likewise, Recursive QAOA for MAXCUT problems shows a systematic increase in the size of the obtained cut for fully connected graphs with random weights, when Goemans-Williamson randomized rounding is utilized in a warm start. It is straightforward to apply the same ideas to other randomized-rounding schemes and optimization problems.
Author Egger, Daniel J
Marecek, Jakub
Woerner, Stefan
Author_xml – sequence: 1
  givenname: Daniel
  surname: Egger
  middlename: J
  fullname: Egger, Daniel J
– sequence: 2
  givenname: Jakub
  surname: Marecek
  fullname: Marecek, Jakub
– sequence: 3
  givenname: Stefan
  surname: Woerner
  fullname: Woerner, Stefan
BookMark eNotjU1LAzEUAIMoWGt_gLei56zJS7Kbd5TiFxQ8KHgsL9tEUtyk3WRF_PUW9DJzm7lgpyknz9iVFI22xohbGr_jVwNCYCOPMCdsBkpJbjXAOVuUshNCQNuBMWrGrt9pHHipNNaYPpaHiVKdhmXe1zjEH6oxp0t2Fuiz-MW_5-z14f5t9cTXL4_Pq7s1JwPIsQPyWwui7QI5HzSSUq1UJHpqnXOEVjlLIWyBZBDaQ-9tb1Ci0-CDmrObv-p-zIfJl7rZ5WlMx-EGtDYSARHVL7y_Qso
ContentType Paper
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2009.10095
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a529-972aed82067fabef49a33613a0ca6bbba983b8affd2a1f04e2ce8c5919b42ef3
IEDL.DBID M7S
IngestDate Mon Jun 30 08:39:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a529-972aed82067fabef49a33613a0ca6bbba983b8affd2a1f04e2ce8c5919b42ef3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2445192999?pq-origsite=%requestingapplication%
PQID 2445192999
PQPubID 2050157
ParticipantIDs proquest_journals_2445192999
PublicationCentury 2000
PublicationDate 20210616
PublicationDateYYYYMMDD 2021-06-16
PublicationDate_xml – month: 06
  year: 2021
  text: 20210616
  day: 16
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7611736
SecondaryResourceType preprint
Snippet There is an increasing interest in quantum algorithms for problems of integer programming and combinatorial optimization. Classical solvers for such problems...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Combinatorial analysis
Continuity (mathematics)
Games
Mathematical analysis
Matrix methods
Optimization
Polynomials
Rounding
Semidefinite programming
Solvers
Title Warm-starting quantum optimization
URI https://www.proquest.com/docview/2445192999
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60VfDkm6q1FPG6tJvsZpOToLQoaFmsaD2VSTaRHvrabYs_3yTd6kHw4jHkkpmEeX75BuBacYociQg0z6IgcvhGzrEdGJbYbIEIyTza4vUx6fX4YCDSsuBWlLDKjU30hjqbKlcjbxHHpGV9uRA3s3ngpka57mo5QmMbqo4lIfTQvf53jYWwxEbMdN3M9NRdLcw_R6s1TWXowotfJtj7le7-f090ANUUZzo_hC09OYJdj-dUxTFcvWE-Dmzk50gCPprzpVXgctycWgMxLn9enkC_23m5uw_KcQgBxlaZIiGoM0-3blBqEwmk1DpjbCtkUkoUnEqOxmQEQ9OONFGaq1iEQkZEG3oKlcl0omvQpDHH2EidRMamdwm1MaNhmBlH1RUTps6gvhF4WL7oYvgj7fnf2xewRxzuw833YXWoLPKlvoQdtVqMirwB1dtOL31u-Iuyq_ThKX3_ArFIneE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ4gaPTkOz5QidHjBmj30R6MB5VAQEICUU6S2W5rOPDaBdT_5I-0LaweTLxx8Nyk6WM680379RuAK8EoMiTckSxyHdfwGxnDkqP8QGcLhIe-ZVs8NYJmk3W7vJWBz_QvjKFVpj7ROupoJMwdeZEYJS0dyzm_HU8cUzXKvK6mJTQWZlGXH286ZUtuavd6f68JqTx07qrOsqqAg54eEw8IysiqlisMpXI5UqpjGpYE-mEYImc0ZKhURLCsSq4kQjLh8TIPXSIV1b2uQU6DCMItUbD9faND_EDjc7p4OrVCYUWM3_vzhShm2YCZXw7fRrHK9v-a_w7kWjiW8S5k5HAPNixXVST7cPmM8cDRqNYIILwWJjNtHLNBYaSd32D5q_QA2isY1CFkh6OhPIIC9Rh6KpSBq3TqGlCNh5WPkTIyZB7xxTHk0-XtLU9r0vtZ25O_my9gs9p5bPQatWb9FLaI4beYOkZ-HrLTeCbPYF3Mp_0kPremUYCX1e7EF-lW-Ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Warm-starting+quantum+optimization&rft.jtitle=arXiv.org&rft.au=Egger%2C+Daniel+J&rft.au=Marecek%2C+Jakub&rft.au=Woerner%2C+Stefan&rft.date=2021-06-16&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2009.10095