Wireless Resource Management in Intelligent Semantic Communication Networks

The prosperity of artificial intelligence (AI) has laid a promising paradigm of communication system, i.e., intelligent semantic communication (ISC), where semantic contents, instead of traditional bit sequences, are coded by AI models for efficient communication. Due to the unique demand of backgro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Le, Xia, Sun, Yao, Li, Xiaoqian, Feng, Gang, Muhammad Ali Imran
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 15.02.2022
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The prosperity of artificial intelligence (AI) has laid a promising paradigm of communication system, i.e., intelligent semantic communication (ISC), where semantic contents, instead of traditional bit sequences, are coded by AI models for efficient communication. Due to the unique demand of background knowledge for semantic recovery, wireless resource management faces new challenges in ISC. In this paper, we address the user association (UA) and bandwidth allocation (BA) problems in an ISC-enabled heterogeneous network (ISC-HetNet). We first introduce the auxiliary knowledge base (KB) into the system model, and develop a new performance metric for the ISC-HetNet, named system throughput in message (STM). Joint optimization of UA and BA is then formulated with the aim of STM maximization subject to KB matching and wireless bandwidth constraints. To this end, we propose a two-stage solution, including a stochastic programming method in the first stage to obtain a deterministic objective with semantic confidence, and a heuristic algorithm in the second stage to reach the optimality of UA and BA. Numerical results show great superiority and reliability of our proposed solution on the STM performance when compared with two baseline algorithms.
AbstractList The prosperity of artificial intelligence (AI) has laid a promising paradigm of communication system, i.e., intelligent semantic communication (ISC), where semantic contents, instead of traditional bit sequences, are coded by AI models for efficient communication. Due to the unique demand of background knowledge for semantic recovery, wireless resource management faces new challenges in ISC. In this paper, we address the user association (UA) and bandwidth allocation (BA) problems in an ISC-enabled heterogeneous network (ISC-HetNet). We first introduce the auxiliary knowledge base (KB) into the system model, and develop a new performance metric for the ISC-HetNet, named system throughput in message (STM). Joint optimization of UA and BA is then formulated with the aim of STM maximization subject to KB matching and wireless bandwidth constraints. To this end, we propose a two-stage solution, including a stochastic programming method in the first stage to obtain a deterministic objective with semantic confidence, and a heuristic algorithm in the second stage to reach the optimality of UA and BA. Numerical results show great superiority and reliability of our proposed solution on the STM performance when compared with two baseline algorithms.
Author Muhammad Ali Imran
Li, Xiaoqian
Sun, Yao
Le, Xia
Feng, Gang
Author_xml – sequence: 1
  givenname: Xia
  surname: Le
  fullname: Le, Xia
– sequence: 2
  givenname: Yao
  surname: Sun
  fullname: Sun, Yao
– sequence: 3
  givenname: Xiaoqian
  surname: Li
  fullname: Li, Xiaoqian
– sequence: 4
  givenname: Gang
  surname: Feng
  fullname: Feng, Gang
– sequence: 5
  fullname: Muhammad Ali Imran
BookMark eNotjkFLwzAYhoMoOOd-gLeA587kS5MmRynqhlNBBx5Hln4dmW2iTar-fCd6enkuz_OekeMQAxJywdm81FKyKzt8-885AIM5q5SAIzIBIXihS4BTMktpzxgDVYGUYkLuX_2AHaZEnzHFcXBIH2ywO-wxZOoDXYaMXed3v_iCvQ3ZO1rHvh-Ddzb7GOgj5q84vKVzctLaLuHsf6dkfXuzrhfF6uluWV-vCivBFKZEbk2LqBElaKVKs9WtEbLFiishXWuQgbRCNojYSOV4A1uhnbJN1VgmpuTyT_s-xI8RU97sD8fDobgBBYbLCpQRP8ESUfU
ContentType Paper
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2202.07632
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a529-94e1a9fee8ee5286649b8f935fe71635cf9e025a35deeed56c1d2b38c6ad7da03
IEDL.DBID M7S
IngestDate Mon Jun 30 09:21:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a529-94e1a9fee8ee5286649b8f935fe71635cf9e025a35deeed56c1d2b38c6ad7da03
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2629157269?pq-origsite=%requestingapplication%
PQID 2629157269
PQPubID 2050157
ParticipantIDs proquest_journals_2629157269
PublicationCentury 2000
PublicationDate 20220215
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 20220215
  day: 15
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7854177
SecondaryResourceType preprint
Snippet The prosperity of artificial intelligence (AI) has laid a promising paradigm of communication system, i.e., intelligent semantic communication (ISC), where...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Artificial intelligence
Bandwidths
Communication
Communication networks
Communications systems
Heuristic methods
Knowledge bases (artificial intelligence)
Optimization
Resource management
Semantics
Stochastic programming
Wireless communications
Title Wireless Resource Management in Intelligent Semantic Communication Networks
URI https://www.proquest.com/docview/2629157269
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aKnjyjY9acvAa2002r5OgtFjUZbE91FPJJllY0G3drcWfb7LdtojgxWPIJUySmcnMl-8D4Jpz6pJoI5AVkqGQsAQlLo1AIeUk0AaHVlWqJU88isR4LOO64FbWsMqVT6wctZlqXyPvYIZlQDlm8nb2gbxqlO-u1hIa26DpWRKCCro3XNdYMOMuYybLZmZF3dVRxVe2uMHY83S6q4V_ueAqrvT3_7uiA9CM1cwWh2DL5kdgt8Jz6vIYPHpU65vzYnBVn4cboAvMcjhYU3HO4dC-O_tmGv74LQKjJUK8PAGjfm90_4Bq3QSkKJZIhjZQMrVWWEuxYCyUiUgloal1jyNCdSqty3QUoca6CEmZDgxOiNBMGW5Ul5yCRj7N7RmACWFdFQpFUk_Trowg7s6nUoRWc5YIfg5aK9NM6rNfTjZ2ufh7-hLsYf-ZwMur0BZozItPewV29GKelUUbNO96UfzSrrbUjeLBc_z6DUgerPk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTwIxEJ0gaPTkd_xA7UGPq9Juvw7Gg0ogICGRAzfS7c4mJArIIuqP8j_aLqzEmHjz4HmTzWZn-vraeTMP4FRK7kh0rAJUWgQhE1EQORoRhFyyio1piCZzLWnKVkt1u7pdgI-8F8bLKnNMzIA6Hlp_R35BBdUVLqnQ16PnwLtG-epqbqExS4sGvr-6I1t6Vb918T2jtHrXuakFc1eBwHCqAx1ixegEUSFyqoQIdaQSzXiC7ujAuE00Oh5gGI_R7R9c2EpMI6asMLGMzSVzr12CkmMRVGdKwYevKx0qpCPobFY7zSaFXZjxW396TqkfC-pWMv2B-Nk2Vl3_Zz9gA0ptM8LxJhRwsAUrmVrVptvQ8JrdR4fRJK8-kIWMh_QHpP41aHRCHvDJZU_fkm-9MKQ107-nO9D5i8_fheJgOMA9IBETlyZUhiV-CL2JFXOIlmgVopUiUnIfynkkevOVnfYWYTj4_fEJrNY6981es95qHMIa9W0T3kiGl6E4Gb_gESzb6aSfjo-zLCLQ--OgfQImbAeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wireless+Resource+Management+in+Intelligent+Semantic+Communication+Networks&rft.jtitle=arXiv.org&rft.au=Le%2C+Xia&rft.au=Sun%2C+Yao&rft.au=Li%2C+Xiaoqian&rft.au=Feng%2C+Gang&rft.date=2022-02-15&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2202.07632