Wireless Resource Management in Intelligent Semantic Communication Networks
The prosperity of artificial intelligence (AI) has laid a promising paradigm of communication system, i.e., intelligent semantic communication (ISC), where semantic contents, instead of traditional bit sequences, are coded by AI models for efficient communication. Due to the unique demand of backgro...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
15.02.2022
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The prosperity of artificial intelligence (AI) has laid a promising paradigm of communication system, i.e., intelligent semantic communication (ISC), where semantic contents, instead of traditional bit sequences, are coded by AI models for efficient communication. Due to the unique demand of background knowledge for semantic recovery, wireless resource management faces new challenges in ISC. In this paper, we address the user association (UA) and bandwidth allocation (BA) problems in an ISC-enabled heterogeneous network (ISC-HetNet). We first introduce the auxiliary knowledge base (KB) into the system model, and develop a new performance metric for the ISC-HetNet, named system throughput in message (STM). Joint optimization of UA and BA is then formulated with the aim of STM maximization subject to KB matching and wireless bandwidth constraints. To this end, we propose a two-stage solution, including a stochastic programming method in the first stage to obtain a deterministic objective with semantic confidence, and a heuristic algorithm in the second stage to reach the optimality of UA and BA. Numerical results show great superiority and reliability of our proposed solution on the STM performance when compared with two baseline algorithms. |
|---|---|
| AbstractList | The prosperity of artificial intelligence (AI) has laid a promising paradigm of communication system, i.e., intelligent semantic communication (ISC), where semantic contents, instead of traditional bit sequences, are coded by AI models for efficient communication. Due to the unique demand of background knowledge for semantic recovery, wireless resource management faces new challenges in ISC. In this paper, we address the user association (UA) and bandwidth allocation (BA) problems in an ISC-enabled heterogeneous network (ISC-HetNet). We first introduce the auxiliary knowledge base (KB) into the system model, and develop a new performance metric for the ISC-HetNet, named system throughput in message (STM). Joint optimization of UA and BA is then formulated with the aim of STM maximization subject to KB matching and wireless bandwidth constraints. To this end, we propose a two-stage solution, including a stochastic programming method in the first stage to obtain a deterministic objective with semantic confidence, and a heuristic algorithm in the second stage to reach the optimality of UA and BA. Numerical results show great superiority and reliability of our proposed solution on the STM performance when compared with two baseline algorithms. |
| Author | Muhammad Ali Imran Li, Xiaoqian Sun, Yao Le, Xia Feng, Gang |
| Author_xml | – sequence: 1 givenname: Xia surname: Le fullname: Le, Xia – sequence: 2 givenname: Yao surname: Sun fullname: Sun, Yao – sequence: 3 givenname: Xiaoqian surname: Li fullname: Li, Xiaoqian – sequence: 4 givenname: Gang surname: Feng fullname: Feng, Gang – sequence: 5 fullname: Muhammad Ali Imran |
| BookMark | eNotjkFLwzAYhoMoOOd-gLeA587kS5MmRynqhlNBBx5Hln4dmW2iTar-fCd6enkuz_OekeMQAxJywdm81FKyKzt8-885AIM5q5SAIzIBIXihS4BTMktpzxgDVYGUYkLuX_2AHaZEnzHFcXBIH2ywO-wxZOoDXYaMXed3v_iCvQ3ZO1rHvh-Ddzb7GOgj5q84vKVzctLaLuHsf6dkfXuzrhfF6uluWV-vCivBFKZEbk2LqBElaKVKs9WtEbLFiishXWuQgbRCNojYSOV4A1uhnbJN1VgmpuTyT_s-xI8RU97sD8fDobgBBYbLCpQRP8ESUfU |
| ContentType | Paper |
| Copyright | 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2202.07632 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a529-94e1a9fee8ee5286649b8f935fe71635cf9e025a35deeed56c1d2b38c6ad7da03 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:21:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a529-94e1a9fee8ee5286649b8f935fe71635cf9e025a35deeed56c1d2b38c6ad7da03 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2629157269?pq-origsite=%requestingapplication% |
| PQID | 2629157269 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2629157269 |
| PublicationCentury | 2000 |
| PublicationDate | 20220215 |
| PublicationDateYYYYMMDD | 2022-02-15 |
| PublicationDate_xml | – month: 02 year: 2022 text: 20220215 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2022 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7854177 |
| SecondaryResourceType | preprint |
| Snippet | The prosperity of artificial intelligence (AI) has laid a promising paradigm of communication system, i.e., intelligent semantic communication (ISC), where... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Artificial intelligence Bandwidths Communication Communication networks Communications systems Heuristic methods Knowledge bases (artificial intelligence) Optimization Resource management Semantics Stochastic programming Wireless communications |
| Title | Wireless Resource Management in Intelligent Semantic Communication Networks |
| URI | https://www.proquest.com/docview/2629157269 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aKnjyjY9acvAa2002r5OgtFjUZbE91FPJJllY0G3drcWfb7LdtojgxWPIJUySmcnMl-8D4Jpz6pJoI5AVkqGQsAQlLo1AIeUk0AaHVlWqJU88isR4LOO64FbWsMqVT6wctZlqXyPvYIZlQDlm8nb2gbxqlO-u1hIa26DpWRKCCro3XNdYMOMuYybLZmZF3dVRxVe2uMHY83S6q4V_ueAqrvT3_7uiA9CM1cwWh2DL5kdgt8Jz6vIYPHpU65vzYnBVn4cboAvMcjhYU3HO4dC-O_tmGv74LQKjJUK8PAGjfm90_4Bq3QSkKJZIhjZQMrVWWEuxYCyUiUgloal1jyNCdSqty3QUoca6CEmZDgxOiNBMGW5Ul5yCRj7N7RmACWFdFQpFUk_Trowg7s6nUoRWc5YIfg5aK9NM6rNfTjZ2ufh7-hLsYf-ZwMur0BZozItPewV29GKelUUbNO96UfzSrrbUjeLBc_z6DUgerPk |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTwIxEJ0gaPTkd_xA7UGPq9Juvw7Gg0ogICGRAzfS7c4mJArIIuqP8j_aLqzEmHjz4HmTzWZn-vraeTMP4FRK7kh0rAJUWgQhE1EQORoRhFyyio1piCZzLWnKVkt1u7pdgI-8F8bLKnNMzIA6Hlp_R35BBdUVLqnQ16PnwLtG-epqbqExS4sGvr-6I1t6Vb918T2jtHrXuakFc1eBwHCqAx1ixegEUSFyqoQIdaQSzXiC7ujAuE00Oh5gGI_R7R9c2EpMI6asMLGMzSVzr12CkmMRVGdKwYevKx0qpCPobFY7zSaFXZjxW396TqkfC-pWMv2B-Nk2Vl3_Zz9gA0ptM8LxJhRwsAUrmVrVptvQ8JrdR4fRJK8-kIWMh_QHpP41aHRCHvDJZU_fkm-9MKQ107-nO9D5i8_fheJgOMA9IBETlyZUhiV-CL2JFXOIlmgVopUiUnIfynkkevOVnfYWYTj4_fEJrNY6981es95qHMIa9W0T3kiGl6E4Gb_gESzb6aSfjo-zLCLQ--OgfQImbAeg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wireless+Resource+Management+in+Intelligent+Semantic+Communication+Networks&rft.jtitle=arXiv.org&rft.au=Le%2C+Xia&rft.au=Sun%2C+Yao&rft.au=Li%2C+Xiaoqian&rft.au=Feng%2C+Gang&rft.date=2022-02-15&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2202.07632 |