An Extended Primal-Dual Algorithm Framework for Nonconvex Problems with Application to Nonlinear Imaging

We propose an extended primal-dual algorithm framework for solving a general nonconvex optimization model. This work is motivated by image reconstruction problems in a class of nonlinear imaging, where the forward operator can be formulated as a nonlinear convex function with respect to the reconstr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Gao, Yu, Pan, Xiaochuan, Chen, Chong
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 15.09.2021
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We propose an extended primal-dual algorithm framework for solving a general nonconvex optimization model. This work is motivated by image reconstruction problems in a class of nonlinear imaging, where the forward operator can be formulated as a nonlinear convex function with respect to the reconstructed image. Using the proposed framework, we put forward six specific iterative schemes, and present their detailed mathematical explanation. We also establish the relationship to existing algorithms. Moreover, under proper assumptions, we analyze the convergence of the schemes for the general model when the optimal dual variable regarding the nonlinear operator is non-vanishing. As a representative, the image reconstruction for spectral computed tomography is used to demonstrate the effectiveness of the proposed algorithm framework. By special properties of the concrete problem, we further prove the convergence of these customized schemes when the optimal dual variable regarding the nonlinear operator is vanishing. Finally, the numerical experiments show that the proposed algorithm has good performance on image reconstruction for various data with non-standard scanning configuration.
Bibliografia:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2109.07174