Energy Consumption Analysis of pruned Semantic Segmentation Networks on an Embedded GPU

Deep neural networks are the state of the art in many computer vision tasks. Their deployment in the context of autonomous vehicles is of particular interest, since their limitations in terms of energy consumption prohibit the use of very large networks, that typically reach the best performance. A...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Tessier, Hugo, Gripon, Vincent, Léonardon, Mathieu, Arzel, Matthieu, Bertrand, David, Hannagan, Thomas
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 13.06.2022
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Deep neural networks are the state of the art in many computer vision tasks. Their deployment in the context of autonomous vehicles is of particular interest, since their limitations in terms of energy consumption prohibit the use of very large networks, that typically reach the best performance. A common method to reduce the complexity of these architectures, without sacrificing accuracy, is to rely on pruning, in which the least important portions are eliminated. There is a large literature on the subject, but interestingly few works have measured the actual impact of pruning on energy. In this work, we are interested in measuring it in the specific context of semantic segmentation for autonomous driving, using the Cityscapes dataset. To this end, we analyze the impact of recently proposed structured pruning methods when trained architectures are deployed on a Jetson Xavier embedded GPU.
AbstractList Deep neural networks are the state of the art in many computer vision tasks. Their deployment in the context of autonomous vehicles is of particular interest, since their limitations in terms of energy consumption prohibit the use of very large networks, that typically reach the best performance. A common method to reduce the complexity of these architectures, without sacrificing accuracy, is to rely on pruning, in which the least important portions are eliminated. There is a large literature on the subject, but interestingly few works have measured the actual impact of pruning on energy. In this work, we are interested in measuring it in the specific context of semantic segmentation for autonomous driving, using the Cityscapes dataset. To this end, we analyze the impact of recently proposed structured pruning methods when trained architectures are deployed on a Jetson Xavier embedded GPU.
Author Gripon, Vincent
Tessier, Hugo
Léonardon, Mathieu
Bertrand, David
Hannagan, Thomas
Arzel, Matthieu
Author_xml – sequence: 1
  givenname: Hugo
  surname: Tessier
  fullname: Tessier, Hugo
– sequence: 2
  givenname: Vincent
  surname: Gripon
  fullname: Gripon, Vincent
– sequence: 3
  givenname: Mathieu
  surname: Léonardon
  fullname: Léonardon, Mathieu
– sequence: 4
  givenname: Matthieu
  surname: Arzel
  fullname: Arzel, Matthieu
– sequence: 5
  givenname: David
  surname: Bertrand
  fullname: Bertrand, David
– sequence: 6
  givenname: Thomas
  surname: Hannagan
  fullname: Hannagan, Thomas
BookMark eNotj0tLw0AAhBdRsNb-AG8LnhP3kX3kWEJshaKCFY9lXympzW7MJmr_vYt6moH5GGauwLkP3gFwg1FeSMbQnRq-28-cEMRzxAljZ2BGKMWZLAi5BIsYDwghwkWK6Ay81d4N-xOsgo9T149t8HDp1fEU2whDA_th8s7CF9cpP7YmmX3n_Kh-wUc3foXhPYEeKg_rTjtrE716fr0GF406Rrf41znY3tfbap1tnlYP1XKTKUbKjKE0o1DMCENsY1FTCm1xoxWRwmDFhW0YN0JLK3FBNReGK2y40ZZZoi2nc3D7V9sP4WNycdwdwjSk_XGXLnIqJcYl_QHQElWY
ContentType Paper
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2206.06255
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a529-507254a5c7c2dfd0f97bd1fba287c1a67df56c7b8d8143b67c6a1c6cbd5d2bd63
IEDL.DBID M7S
IngestDate Mon Jun 30 09:15:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a529-507254a5c7c2dfd0f97bd1fba287c1a67df56c7b8d8143b67c6a1c6cbd5d2bd63
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2676388119?pq-origsite=%requestingapplication%
PQID 2676388119
PQPubID 2050157
ParticipantIDs proquest_journals_2676388119
PublicationCentury 2000
PublicationDate 20220613
PublicationDateYYYYMMDD 2022-06-13
PublicationDate_xml – month: 06
  year: 2022
  text: 20220613
  day: 13
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7975274
SecondaryResourceType preprint
Snippet Deep neural networks are the state of the art in many computer vision tasks. Their deployment in the context of autonomous vehicles is of particular interest,...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Artificial neural networks
Computer vision
Context
Energy consumption
Impact analysis
Pruning
Semantic segmentation
Title Energy Consumption Analysis of pruned Semantic Segmentation Networks on an Embedded GPU
URI https://www.proquest.com/docview/2676388119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA-6KXjyjY85cvAat6ZNHyfB0amgpbip8zTylB3azXYb_vl-zTo9CF68NbSB8KX55fe9EbpUQjtMU5cA-faIp0RAhOtowuDnUaarPG6j3V8egiQJR6MorQ1uZR1WucZEC9RqKisbeYf6cBLC0HGi69kHqbpGVd7VuoXGJmpWVRKoDd0bfNtYYA4wZnflzLSluzq8-JwsryitfBBA_dkvCLb3Sn_3vyvaQ82Uz3SxjzZ0foC2bTynLA_Ra2xz-nDPZlhaWMDr-iN4avCsWAC-4oHOQLITCQ_vWZ2FlONkFRoOH-aY5zjOhAZ4Uvg2fT5Cw3487N2RuocC4YxGBNgeaICcyUCC6FXXRIFQjhEcFCXpwD4ow3wZiFCFQJyEH0ifO9KXQjFFhfLdY9TIp7k-QRioj2cY9ylMA6WTRwa0Z-1GSkaGwg13ilprMY3rc1COf2R09vfrc7RDq8SCqiuQ20KNebHQF2hLLueTsmij5k2cpE9tu70wSu8f07cvV22xHg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gaPTkOz5Q96DHCt2-D8YDghCQkIDKjeyrhgMFW0D9Uf5HpwvVg4k3Dt6abNvM7sx-M7MzswNwKbkyHUUtA41v27Al9wxumcpwUHhkWJY209nuTy2v3fb7_aCTg8-sFiZNq8wwUQO1HIv0jLxEXdwJvm-awe3k1Ui7RqXR1ayFxkIsmurjDV225KZxh_y9orRW7VXqxrKrgMEcGhho_6BPxBzhCSRGlsPA49IMOUPXQZhImQwdV3jclz6aEtz1hMtM4QouHUm5dC387RoU7BT8daZg9_tIB0lEA91axE71TWElFr8P59eUpiEP9DScX4iv1Vht-58twA4UOmyi4l3IqWgPNnS2qkj24bmqKxZJRdePatAj2e0qZBySSTxD7UG6aoRyMxT48DJa1lhFpL1IfMcXI8IiUh1xheAryX3n8QB6q5jKIeSjcaSOgKBhZ4cOcyl-hi41C0LP95UVSBGEFPX3MRQzrgyWuzwZ_LDk5O_hC9is9x5ag1aj3TyFLZqWUKT9j6wi5KfxTJ3BuphPh0l8riWKwGDFDPwChc8L7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Consumption+Analysis+of+pruned+Semantic+Segmentation+Networks+on+an+Embedded+GPU&rft.jtitle=arXiv.org&rft.au=Tessier%2C+Hugo&rft.au=Gripon%2C+Vincent&rft.au=L%C3%A9onardon%2C+Mathieu&rft.au=Arzel%2C+Matthieu&rft.date=2022-06-13&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2206.06255