A Provably Accurate Randomized Sampling Algorithm for Logistic Regression
In statistics and machine learning, logistic regression is a widely-used supervised learning technique primarily employed for binary classification tasks. When the number of observations greatly exceeds the number of predictor variables, we present a simple, randomized sampling-based algorithm for l...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
31.03.2024
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In statistics and machine learning, logistic regression is a widely-used supervised learning technique primarily employed for binary classification tasks. When the number of observations greatly exceeds the number of predictor variables, we present a simple, randomized sampling-based algorithm for logistic regression problem that guarantees high-quality approximations to both the estimated probabilities and the overall discrepancy of the model. Our analysis builds upon two simple structural conditions that boil down to randomized matrix multiplication, a fundamental and well-understood primitive of randomized numerical linear algebra. We analyze the properties of estimated probabilities of logistic regression when leverage scores are used to sample observations, and prove that accurate approximations can be achieved with a sample whose size is much smaller than the total number of observations. To further validate our theoretical findings, we conduct comprehensive empirical evaluations. Overall, our work sheds light on the potential of using randomized sampling approaches to efficiently approximate the estimated probabilities in logistic regression, offering a practical and computationally efficient solution for large-scale datasets. |
|---|---|
| AbstractList | In statistics and machine learning, logistic regression is a widely-used supervised learning technique primarily employed for binary classification tasks. When the number of observations greatly exceeds the number of predictor variables, we present a simple, randomized sampling-based algorithm for logistic regression problem that guarantees high-quality approximations to both the estimated probabilities and the overall discrepancy of the model. Our analysis builds upon two simple structural conditions that boil down to randomized matrix multiplication, a fundamental and well-understood primitive of randomized numerical linear algebra. We analyze the properties of estimated probabilities of logistic regression when leverage scores are used to sample observations, and prove that accurate approximations can be achieved with a sample whose size is much smaller than the total number of observations. To further validate our theoretical findings, we conduct comprehensive empirical evaluations. Overall, our work sheds light on the potential of using randomized sampling approaches to efficiently approximate the estimated probabilities in logistic regression, offering a practical and computationally efficient solution for large-scale datasets. |
| Author | Ramuhalli, Pradeep Chowdhury, Agniva |
| Author_xml | – sequence: 1 givenname: Agniva surname: Chowdhury fullname: Chowdhury, Agniva – sequence: 2 givenname: Pradeep surname: Ramuhalli fullname: Ramuhalli, Pradeep |
| BookMark | eNotzU9LwzAYgPEgCs65D-At4Ln1zZt_7bEMdYOCMncfaZrWjK6ZSTfUT6-gp-f2e27I5RhGR8gdg1wUUsKDiZ_-nKMAzJniqC7IDDlnWSEQr8kipT0AoNIoJZ-RdUVfYzibZviilbWnaCZHN2Zsw8F_u5a-mcNx8GNPq6EP0U_vB9qFSOvQ-zR5Szeujy4lH8ZbctWZIbnFf-dk-_S4Xa6y-uV5vazqzEgsM1QFaxy3qFuLCo0AcACi1Fq30pSdYrKAxhYNQ2etttJIhV1nBWiBbdPxObn_Y48xfJxcmnb7cIrj73GHJUfOFMiS_wA-u0-d |
| ContentType | Paper |
| Copyright | 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2402.16326 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database (Proquest) Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a529-2681be3c27dc262a400e0049777d5a9f61580bc8b12ecc7c5a562ffc40742dbf3 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:24:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a529-2681be3c27dc262a400e0049777d5a9f61580bc8b12ecc7c5a562ffc40742dbf3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2932316059?pq-origsite=%requestingapplication% |
| PQID | 2932316059 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2932316059 |
| PublicationCentury | 2000 |
| PublicationDate | 20240331 |
| PublicationDateYYYYMMDD | 2024-03-31 |
| PublicationDate_xml | – month: 03 year: 2024 text: 20240331 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2024 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8651023 |
| SecondaryResourceType | preprint |
| Snippet | In statistics and machine learning, logistic regression is a widely-used supervised learning technique primarily employed for binary classification tasks. When... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Approximation Empirical analysis Linear algebra Machine learning Multiplication Regression Regression analysis Sampling Supervised learning |
| Title | A Provably Accurate Randomized Sampling Algorithm for Logistic Regression |
| URI | https://www.proquest.com/docview/2932316059 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMcbBU08-Tv-QNKD1_GjW9f1ZNBAJFGyAAc8kbbrcAlsuAFR_3pft6EHEy8elyXN8rq-fvret-8hdCtlW9shFVbocGE5zJGWAFdpebwlgEeUdFjRbIINBt5kwv0y4JaVssqtT8wddZAoEyNvwrYEKALwze-Wb5bpGmWyq2ULjV1UNZXKnAqq3ncH_vA7ykJcBsxsF-nMvHhXU6Tv0aZhkgoNYBHi_nLC-c7SO_zvNx2hqi-WOj1GOzo-Qfu5olNlp6jfwX6abIScf-COUmtTEgIPRRwki-hTB3gkjJY8nuHOfAZjrl4XGPgVP-U3giKFh3pWSGTjMzTudccPj1bZN8ESlHCLuICi2laEBYq4RMAq1eYgwBgLqOAhMIzXksqTbQLzxxQVwEBhqBxzTA5kaJ-jSpzE-gJh7dhCEc1pKMBgbS4lhUEF5VRJ4ip5iWpbw0zLfz-b_ljl6u_X1-iAACIUN_xqqLJK1_oG7anNKsrSejmVdaPGHMGT33_2X74AsaWsuA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED5BAcHEWzwKeIAxLXUejgeEKqBqRamq0qFbZTtOiVQSSB9Q_hP_kXNCYUBiY2C2ZNm5y3effd_5AE6lrGg7dIUVOlxYDnOkJRAqLZ-fC-QjSjosbzbBWi2_1-PtBXif18IYWeUcEzOgDhJl7sjLGJaQiiD55pdPz5bpGmWyq_MWGrlb3OrZCx7ZRheNa7TvGaW1m-5V3frsKmAJl3KLekjUtK0oCxT1qEAf1oYmM8YCV_AQI7x_LpUvKxR3x5QrkCGEoXLMITKQoY3TLsKSY8A_Uwref13pUI8hQbfz3Gn2UlhZpK_RtGQyGCUkPtT7gfhZGKut_7MPsAFLbfGk001Y0PEWrGRqVTXahkaVtNNkKuRwRqpKTcxzF6Qj4iB5jN50QO6F0cnHA1IdDnAL44dHgtycNLNqp0iRjh7k8t94B7p_sfhdKMRJrPeAaMcWimruhgLtU-FSujipcLmrJPWU3Ifi3A79z_961P82wsHvwyewWu_eNfvNRuv2ENYoUqG8krEIhXE60UewrKbjaJQeZz5EoP_HJvsAG98D6g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Provably+Accurate+Randomized+Sampling+Algorithm+for+Logistic+Regression&rft.jtitle=arXiv.org&rft.au=Chowdhury%2C+Agniva&rft.au=Ramuhalli%2C+Pradeep&rft.date=2024-03-31&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2402.16326 |