A Partition Identity Related to Stanley's Theorem
In this paper, we use the Lambert series generating function for Euler's totient function to introduce a new identity for the number of \(1\)'s in the partitions of \(n\). A new expansion for Euler's partition function \(p(n)\) is derived in this context. These surprising new results...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
20.10.2023
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we use the Lambert series generating function for Euler's totient function to introduce a new identity for the number of \(1\)'s in the partitions of \(n\). A new expansion for Euler's partition function \(p(n)\) is derived in this context. These surprising new results connect the famous classical totient function from multiplicative number theory to the additive theory of partitions. |
|---|---|
| Bibliografia: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2310.13672 |