A Partition Identity Related to Stanley's Theorem

In this paper, we use the Lambert series generating function for Euler's totient function to introduce a new identity for the number of \(1\)'s in the partitions of \(n\). A new expansion for Euler's partition function \(p(n)\) is derived in this context. These surprising new results...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Merca, Mircea, Schmidt, Maxie D
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 20.10.2023
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we use the Lambert series generating function for Euler's totient function to introduce a new identity for the number of \(1\)'s in the partitions of \(n\). A new expansion for Euler's partition function \(p(n)\) is derived in this context. These surprising new results connect the famous classical totient function from multiplicative number theory to the additive theory of partitions.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2310.13672