A Partition Identity Related to Stanley's Theorem
In this paper, we use the Lambert series generating function for Euler's totient function to introduce a new identity for the number of \(1\)'s in the partitions of \(n\). A new expansion for Euler's partition function \(p(n)\) is derived in this context. These surprising new results...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
20.10.2023
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we use the Lambert series generating function for Euler's totient function to introduce a new identity for the number of \(1\)'s in the partitions of \(n\). A new expansion for Euler's partition function \(p(n)\) is derived in this context. These surprising new results connect the famous classical totient function from multiplicative number theory to the additive theory of partitions. |
|---|---|
| AbstractList | In this paper, we use the Lambert series generating function for Euler's totient function to introduce a new identity for the number of \(1\)'s in the partitions of \(n\). A new expansion for Euler's partition function \(p(n)\) is derived in this context. These surprising new results connect the famous classical totient function from multiplicative number theory to the additive theory of partitions. |
| Author | Schmidt, Maxie D Merca, Mircea |
| Author_xml | – sequence: 1 givenname: Mircea surname: Merca fullname: Merca, Mircea – sequence: 2 givenname: Maxie surname: Schmidt middlename: D fullname: Schmidt, Maxie D |
| BookMark | eNotjVFLwzAUhYMoOOd-gG8BH3zqTG5ym-RxDJ2DgaJ9H7dNih010TYT9-8t6NM5fAe-c8XOY4qBsRspltoiinsafrrvJagJSFUaOGMzUEoWVgNcssU4HoQQMA2Iasbkir_QkLvcpci3PsSpnvhr6CkHz3Pib5liH053I6_eQxrCxzW7aKkfw-I_56x6fKjWT8XuebNdr3YFIbhCKiDZCqNRoUdFFm0NbeNqXTal16SM840GQyVgkOhMXcsykHU1WtM4r-bs9k_7OaSvYxjz_pCOQ5we92CtQAdOO_ULk8tF-w |
| ContentType | Paper |
| Copyright | 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2310.13672 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection (via ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a529-132a1f074535d53a858b2fc9b46c6d4a379dc427a625e1597bb16ea89b587c9d3 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:17:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a529-132a1f074535d53a858b2fc9b46c6d4a379dc427a625e1597bb16ea89b587c9d3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2880592949?pq-origsite=%requestingapplication% |
| PQID | 2880592949 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2880592949 |
| PublicationCentury | 2000 |
| PublicationDate | 20231020 |
| PublicationDateYYYYMMDD | 2023-10-20 |
| PublicationDate_xml | – month: 10 year: 2023 text: 20231020 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2023 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8483672 |
| SecondaryResourceType | preprint |
| Snippet | In this paper, we use the Lambert series generating function for Euler's totient function to introduce a new identity for the number of \(1\)'s in the... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Number theory Partitions (mathematics) |
| Title | A Partition Identity Related to Stanley's Theorem |
| URI | https://www.proquest.com/docview/2880592949 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BCxITb_EoVQYkJtPGseN4QoBawUAVQYcyVX5F6kBbklLBv-dsUhALC2NkRUrOp7vvzp_vAzinLuMZQgFSGJ4Sn_GIMqxLlCjSWAuJkMMGsQkxGGSjkczrhltV0ypXMTEEajszvkfeoehoHHM5k1fzV-JVo_zpai2hsQ5NP6mMNaB50xvkj99dFpoKxMzJ13FmGN7VUeX7ZHnpYY2neIXJwL-DcMgs_e3_ftMONHM1d-UurLnpHmwGRqep9iG-jnLvFt7wUX0d9yMK3Ddno8Us8vrBGBEuqijcz3cvBzDs94a3d6TWRyCKU0mwjlRxgRCAJ9zyRKHRNS2M1Cw1qWUqEdIaRoXCEschahFax6lTmdQ8E0ba5BAa09nUHUGENVNsZcGpsPh20dWGygwrMQQXTAmTHENrZYBx7ePV-OfvT_5ePoUtL9LuIz7ttqCxKN_cGWyY5WJSle16y9qedfmET_n9Q_78CZEJocM |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VFgQTb_EokAHEFNo4cRwPCCGgatWHMnQoU-XYjtSBtiSl0B_Ff-ScJiAWtg7MUSLn_Pm-O_t8H8Al0QENMBSwY0l92zCeLaRXtwWLfSdiHEMOlYlNsF4vGAx4WILP4i6MKassfGLmqNVEmj3yGkGgUeRyj99NX22jGmVOVwsJjSUs2nrxjilbett6xPm9IqTx1H9o2rmqgC0o4TZmX8KJkTipSxV1BQ41IrHkkedLX3nCZVxJjzCBiYFGrmdR5PhaBDyiAZNcufjZNah4iPWgDJWw1Q2fvzd1iM8wRHeXp6dZr7CaSD5G8xsTRZmKsqwR8W-fnxFZY_ufmWAHf11MdbILJT3eg42sXlWm--DcW6EBvYGVlV82XlhZZZ9W1mxiGXVk9HfXqZV1H9AvB9BfxSAPoTyejPURWJgROorHlDCFb8f1SBIeYJ6JoZMnmHSPoVrYe5iv4HT4Y-yTvx9fwGaz3-0MO61e-xS2jBy94TZSr0J5lrzpM1iX89koTc5ztFgwXPHkfAEs1fmc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Partition+Identity+Related+to+Stanley%27s+Theorem&rft.jtitle=arXiv.org&rft.au=Merca%2C+Mircea&rft.au=Schmidt%2C+Maxie+D&rft.date=2023-10-20&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2310.13672 |