MIN2Net: End-to-End Multi-Task Learning for Subject-Independent Motor Imagery EEG Classification

Advances in the motor imagery (MI)-based brain-computer interfaces (BCIs) allow control of several applications by decoding neurophysiological phenomena, which are usually recorded by electroencephalography (EEG) using a non-invasive technique. Despite great advances in MI-based BCI, EEG rhythms are...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Autthasan, Phairot, Chaisaen, Rattanaphon, Sudhawiyangkul, Thapanun, Rangpong, Phurin, Kiatthaveephong, Suktipol, Dilokthanakul, Nat, Bhakdisongkhram, Gun, Phan, Huy, Guan, Cuntai, Wilaiprasitporn, Theerawit
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 07.01.2022
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Advances in the motor imagery (MI)-based brain-computer interfaces (BCIs) allow control of several applications by decoding neurophysiological phenomena, which are usually recorded by electroencephalography (EEG) using a non-invasive technique. Despite great advances in MI-based BCI, EEG rhythms are specific to a subject and various changes over time. These issues point to significant challenges to enhance the classification performance, especially in a subject-independent manner. To overcome these challenges, we propose MIN2Net, a novel end-to-end multi-task learning to tackle this task. We integrate deep metric learning into a multi-task autoencoder to learn a compact and discriminative latent representation from EEG and perform classification simultaneously. This approach reduces the complexity in pre-processing, results in significant performance improvement on EEG classification. Experimental results in a subject-independent manner show that MIN2Net outperforms the state-of-the-art techniques, achieving an F1-score improvement of 6.72%, and 2.23% on the SMR-BCI, and OpenBMI datasets, respectively. We demonstrate that MIN2Net improves discriminative information in the latent representation. This study indicates the possibility and practicality of using this model to develop MI-based BCI applications for new users without the need for calibration.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2102.03814