Optimality Conditions for Convex Stochastic Optimization Problems in Banach Spaces with Almost Sure State Constraints

We analyze a convex stochastic optimization problem where the state is assumed to belong to the Bochner space of essentially bounded random variables with images in a reflexive and separable Banach space. For this problem, we obtain optimality conditions that are, with an appropriate model, necessar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Geiersbach, Caroline, Wollner, Winnifried
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 28.06.2021
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We analyze a convex stochastic optimization problem where the state is assumed to belong to the Bochner space of essentially bounded random variables with images in a reflexive and separable Banach space. For this problem, we obtain optimality conditions that are, with an appropriate model, necessary and sufficient. Additionally, the Lagrange multipliers associated with optimality conditions are integrable vector-valued functions and not only measures. A model problem is given demonstrating the application to PDE-constrained optimization under uncertainty with an outlook for further applications.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2009.04168