Generating Instances with Performance Differences for More Than Just Two Algorithms

In recent years, Evolutionary Algorithms (EAs) have frequently been adopted to evolve instances for optimization problems that pose difficulties for one algorithm while being rather easy for a competitor and vice versa. Typically, this is achieved by either minimizing or maximizing the performance d...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Bossek, Jakob, Wagner, Markus
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 29.04.2021
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent years, Evolutionary Algorithms (EAs) have frequently been adopted to evolve instances for optimization problems that pose difficulties for one algorithm while being rather easy for a competitor and vice versa. Typically, this is achieved by either minimizing or maximizing the performance difference or ratio which serves as the fitness function. Repeating this process is useful to gain insights into strengths/weaknesses of certain algorithms or to build a set of instances with strong performance differences as a foundation for automatic per-instance algorithm selection or configuration. We contribute to this branch of research by proposing fitness-functions to evolve instances that show large performance differences for more than just two algorithms simultaneously. As a proof-of-principle, we evolve instances of the multi-component Traveling Thief Problem~(TTP) for three incomplete TTP-solvers. Our results point out that our strategies are promising, but unsurprisingly their success strongly relies on the algorithms' performance complementarity.
AbstractList In recent years, Evolutionary Algorithms (EAs) have frequently been adopted to evolve instances for optimization problems that pose difficulties for one algorithm while being rather easy for a competitor and vice versa. Typically, this is achieved by either minimizing or maximizing the performance difference or ratio which serves as the fitness function. Repeating this process is useful to gain insights into strengths/weaknesses of certain algorithms or to build a set of instances with strong performance differences as a foundation for automatic per-instance algorithm selection or configuration. We contribute to this branch of research by proposing fitness-functions to evolve instances that show large performance differences for more than just two algorithms simultaneously. As a proof-of-principle, we evolve instances of the multi-component Traveling Thief Problem~(TTP) for three incomplete TTP-solvers. Our results point out that our strategies are promising, but unsurprisingly their success strongly relies on the algorithms' performance complementarity.
Author Wagner, Markus
Bossek, Jakob
Author_xml – sequence: 1
  givenname: Jakob
  surname: Bossek
  fullname: Bossek, Jakob
– sequence: 2
  givenname: Markus
  surname: Wagner
  fullname: Wagner, Markus
BookMark eNotjUtPAjEYRRujiYj8AHdNXA_2Oe0sCSpiMJo4e9Kv08IQaLWdEX6-42N1k3Nz7r1C5yEGh9ANJVOhpSR3Jp3arymjREypYEqeoRHjnBZaMHaJJjnvCCGsVExKPkLvCxdcMl0bNngZcmeCdRkf226L31zyMR1-CL5vvXfJ_ZYDxC8xOVxvTcDPfe5wfYx4tt_ENHiHfI0uvNlnN_nPMaofH-r5U7F6XSzns1VhJNMFVKUFSpR3WtrSC6nAqwq4plRr0I3nFKywwlcKtAQoGwolWENU4x34ho_R7d_sR4qfvcvdehf7FIbHNZOMECEE1fwbWuxUlw
ContentType Paper
Copyright 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2104.14275
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Databases
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a528-b96cb107fe85c6f457bf79b381188b8df31bc4c4f97b85bb6d1b6bca07dfebfd3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:13:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a528-b96cb107fe85c6f457bf79b381188b8df31bc4c4f97b85bb6d1b6bca07dfebfd3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2520044418?pq-origsite=%requestingapplication%
PQID 2520044418
PQPubID 2050157
ParticipantIDs proquest_journals_2520044418
PublicationCentury 2000
PublicationDate 20210429
PublicationDateYYYYMMDD 2021-04-29
PublicationDate_xml – month: 04
  year: 2021
  text: 20210429
  day: 29
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7566701
SecondaryResourceType preprint
Snippet In recent years, Evolutionary Algorithms (EAs) have frequently been adopted to evolve instances for optimization problems that pose difficulties for one...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Evolutionary algorithms
Fitness
Optimization
Title Generating Instances with Performance Differences for More Than Just Two Algorithms
URI https://www.proquest.com/docview/2520044418
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagBYmJt3iUygNraJw4sTMhHkV0aBXRDGWqcrZDK0FSklL4-dhuSgckFhZL8Q2JbPm7892X-xC69EPgqfJshZHqgSqHAxB93JlMZaZ0TECt2AQbDPhoFMV1wq2qaZUrTLRALQthcuQdz_QHotp58-vZu2NUo0x1tZbQ2ERN0yWBWOre8CfH4oVMR8z-sphpW3d10vJrurjS9xyqMcJjwS8Itn7lYfe_X7SHmnE6U-U-2lD5Adq2fE5RHaLhsp204TTjno0ANR5gk3TF8fpXAXxfy6MYo57E_aJUOJmkOTYqXzj5LPDN64t-6XzyVh2h5KGb3D06tX6CkwYedyAKBejbXaZ4IMKMBgwyFoF20YRz4DLzCQgqaBYx4AFAKAmEIFKX6T2CTPrHqJEXuTpBmDBX-EQKQpSgkrhpxHzOFYDMTJ2NnKLWaonG9Rmoxuv1OfvbfI52PMMUcanjRS3UmJcf6gJticV8WpVt1LztDuKntt1a_RT3-vHzNwYPsC0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07b9swED4kToN26jPoI205tKNqk6JEaiiKoqlhw45hIBqyGTqSig0kliu5dvOj8h97pO16KNAtQxcNIiCQOvKeH-8D-BCnqAsnQoVR0kO6SCNyOu7KFrZ05BPIQDahRiN9eZmND-BudxfGwyp3OjEoalsZnyNvC98fSJLx1l8WPyLPGuWrqzsKjc22GLjbNYVszef-Gcn3oxDd7_m3XrRlFYiKROgIs9QgxTyl04lJS5koLFWGZLi41qhtGXM00sgyU6gTxNRyTNEUHUUzx9LG9NlDOKKJiCwgBS_-pHREqshBjze109AprF3Uv2arTxRWSVJJQiV_afxgxrqP_7Mf8ASOxsXC1U_hwM2fwXFAq5rmOVxsmmV7xDbrB_-WtB3zKWU23l-EYGdb8hc_SC_ZeVU7lk-LOfMcZixfV-zr9RWtcTm9aV5Afh_LOIHWvJq7l8C46piYW8O5M9LyTpGpWGuHaEtfReSv4HQnkcn2hDeTvThe_3v4PTzs5efDybA_GryBR8JjYjoyEtkptJb1T_cWHpjVctbU78JuYjC5Z-H9BscyDGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+Instances+with+Performance+Differences+for+More+Than+Just+Two+Algorithms&rft.jtitle=arXiv.org&rft.au=Bossek%2C+Jakob&rft.au=Wagner%2C+Markus&rft.date=2021-04-29&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2104.14275