Relative Lipschitz-like property of parametric systems via projectional coderivative

This paper concerns upper estimates of the projectional coderivative of implicit mappings and corresponding applications on analyzing the relative Lipschitz-like property. Under different constraint qualifications, we provide upper estimates of the projectional coderivative for solution mappings of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Yao, Wenfang, Yang, Xiaoqi
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 20.10.2022
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper concerns upper estimates of the projectional coderivative of implicit mappings and corresponding applications on analyzing the relative Lipschitz-like property. Under different constraint qualifications, we provide upper estimates of the projectional coderivative for solution mappings of parametric systems. For the solution mapping of affine variational inequalities, a generalized critical face condition is obtained for sufficiency of its Lipschitz-like property relative to a polyhedral set within its domain under a constraint qualification. The equivalence between the relative Lipschitz-like property and the local inner-semicontinuity for polyhedral multifunctions is also demonstrated. For the solution mapping of linear complementarity problems with a \(Q_0\)-matrix, we establish a sufficient and necessary condition for the Lipschitz-like property relative to its convex domain via the generalized critical face condition and its combinatorial nature.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2210.11335