Relative Lipschitz-like property of parametric systems via projectional coderivative
This paper concerns upper estimates of the projectional coderivative of implicit mappings and corresponding applications on analyzing the relative Lipschitz-like property. Under different constraint qualifications, we provide upper estimates of the projectional coderivative for solution mappings of...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
20.10.2022
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper concerns upper estimates of the projectional coderivative of implicit mappings and corresponding applications on analyzing the relative Lipschitz-like property. Under different constraint qualifications, we provide upper estimates of the projectional coderivative for solution mappings of parametric systems. For the solution mapping of affine variational inequalities, a generalized critical face condition is obtained for sufficiency of its Lipschitz-like property relative to a polyhedral set within its domain under a constraint qualification. The equivalence between the relative Lipschitz-like property and the local inner-semicontinuity for polyhedral multifunctions is also demonstrated. For the solution mapping of linear complementarity problems with a \(Q_0\)-matrix, we establish a sufficient and necessary condition for the Lipschitz-like property relative to its convex domain via the generalized critical face condition and its combinatorial nature. |
|---|---|
| Bibliografia: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2210.11335 |