Convergence for noncommutative rational functions evaluated in random matrices
One of the main applications of free probability is to show that for appropriately chosen independent copies of \(d\) random matrix models, any noncommutative polynomial in these \(d\) variables has a spectral distribution that converges asymptotically and can be described with the help of free prob...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
15.11.2022
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | One of the main applications of free probability is to show that for appropriately chosen independent copies of \(d\) random matrix models, any noncommutative polynomial in these \(d\) variables has a spectral distribution that converges asymptotically and can be described with the help of free probability. This paper aims to show that this can be extended to noncommutative rational functions, answering an open question by Roland Speicher. This paper also provides a noncommutative probability approach to approximating the free field. At the algebraic level, its construction relies on the approximation by generic matrices. On the other hand, it admits many embeddings in the algebra of operators affiliated with a \(II_1\) factor. A consequence of our result is that, as soon as the generators admit a random matrix model, the approximation of any self-adjoint noncommutative rational function by generic matrices can be upgraded at the level of convergence in distribution. |
|---|---|
| AbstractList | One of the main applications of free probability is to show that for appropriately chosen independent copies of \(d\) random matrix models, any noncommutative polynomial in these \(d\) variables has a spectral distribution that converges asymptotically and can be described with the help of free probability. This paper aims to show that this can be extended to noncommutative rational functions, answering an open question by Roland Speicher. This paper also provides a noncommutative probability approach to approximating the free field. At the algebraic level, its construction relies on the approximation by generic matrices. On the other hand, it admits many embeddings in the algebra of operators affiliated with a \(II_1\) factor. A consequence of our result is that, as soon as the generators admit a random matrix model, the approximation of any self-adjoint noncommutative rational function by generic matrices can be upgraded at the level of convergence in distribution. |
| Author | Miyagawa, Akihiro Yin, Sheng Mai, Tobias Parraud, Félix Collins, Benoît |
| Author_xml | – sequence: 1 givenname: Benoît surname: Collins fullname: Collins, Benoît – sequence: 2 givenname: Tobias surname: Mai fullname: Mai, Tobias – sequence: 3 givenname: Akihiro surname: Miyagawa fullname: Miyagawa, Akihiro – sequence: 4 givenname: Félix surname: Parraud fullname: Parraud, Félix – sequence: 5 givenname: Sheng surname: Yin fullname: Yin, Sheng |
| BookMark | eNotjs1KxDAURoMoOI7zAO4Crlvzd9t0KYM6wqCb2Q-Z9F7p0CaatMXHt6Krc-CDw3fDLkMMyNidFKWxAOLBpe9uLpUUuhTQVOqCrZTWsrBGqWu2yfkshFBVrQD0ir1tY5gxfWDwyCkmvuR8HIZpdGM3I08LYnA9pyn4X80cZ9dPbsSWd2HZQxsHPrgxdR7zLbsi12fc_HPNDs9Ph-2u2L-_vG4f94UDZYuaNLREhnxDmoQHVVXOO2VNTfKk0WhbnSR57ZwgatBI4a1tam_aSmoJes3u_7KfKX5NmMfjOU5puZmPCoSQFmqw-gdIVVMb |
| ContentType | Paper |
| Copyright | 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2103.05962 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest MSED ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a528-7f35dff4fc9f3f0c5266aca2847f1b3e4386b1fc3aa0ff9e410c8897c4d613153 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:26:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a528-7f35dff4fc9f3f0c5266aca2847f1b3e4386b1fc3aa0ff9e410c8897c4d613153 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2500185758?pq-origsite=%requestingapplication% |
| PQID | 2500185758 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2500185758 |
| PublicationCentury | 2000 |
| PublicationDate | 20221115 |
| PublicationDateYYYYMMDD | 2022-11-15 |
| PublicationDate_xml | – month: 11 year: 2022 text: 20221115 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2022 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8132288 |
| SecondaryResourceType | preprint |
| Snippet | One of the main applications of free probability is to show that for appropriately chosen independent copies of \(d\) random matrix models, any noncommutative... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Approximation Convergence Polynomials Rational functions |
| Title | Convergence for noncommutative rational functions evaluated in random matrices |
| URI | https://www.proquest.com/docview/2500185758 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BCxITb_EolQdWt0lsJ_aERNUKJIgi6FCmyvFD6tAHSan4-dgmwIDEwmjZg3W27vOdv_sO4DoVJOU6VVglJsFUC4W5iASWmaax5ilROhQKP2R5zicTUTQJt7qhVX75xOCo9VL5HHnfQXXkdYsYv1m9Yt81yv-uNi00tqHtVRLiQN17_s6xJGnmXszk8zMzSHf1ZfU-2_RcnEN6ofHMLxcccGW0_98dHUC7kCtTHcKWWRzBbuBzqvoY8oFnk4fCSoPcuxS5KF_5WpB1EPpGVZMDRB7XwtVDje630Wi2cPMLvZyjeRDwN_UJjEfD8eAON60TsGQJx5klTFtLrRKW2EgxB8NSSQ9FNi6JoYSnZWwVkTKyVhgaR4pzkSmqHbw7J3gKLbcvcwYolklJ3QK3UFAHqNKyMks1K2WSCa7ZOXS-rDNtrn89_THNxd_Tl7CX-HoCz6tjHWitqzdzBTtqs57VVRfat8O8eOqGU3Wj4v6xePkAHf-vrg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELaqFgQTb_Eo4AHGtImdhz0ghkLVqiWqRIdukeOH1KFpSUqBH8V_xHYTGJDYOjDbQ5yz7zuf77sPgJuQ4pCIkDscSeT4gnKHUJc6LBK-J0iIubBE4WEUx2QyoaMa-Ky4MKassvKJ1lGLOTc58raGatf0LQrI_eLFMapR5nW1ktBYb4uB_HjTV7birv-g7XuLUPdx3Ok5paqAwwJEnEjhQCjlK04VVi4PNEIxzoyXVl6KpY9JmHqKY8Zcpaj0PZcTQiPuC418nhGJ0B6_oaMIRG2l4PN3SgeFkQ7Q8frt1HYKa7P8fbpq6WsVblmdm18e38JYd--f_YB90BixhcwPQE1mh2DbVqvy4gjEHVMrb2mjEuqoG2bzjBumy9K2MYd5meGEBrXtwYJlV3Mp4DTT45mYz-DMyhPI4hiMN7GCE1DX3yVPAfQYSn09QU-kvg4XmArSKBRBylBEiQjOQLMyRlIe7iL5scT538PXYKc3fhomw348uAC7yDAnTAVh0AT1Zf4qL8EWXy2nRX5lNxIEyYbt9gV2nAjz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+for+noncommutative+rational+functions+evaluated+in+random+matrices&rft.jtitle=arXiv.org&rft.au=Collins%2C+Beno%C3%AEt&rft.au=Mai%2C+Tobias&rft.au=Miyagawa%2C+Akihiro&rft.au=Parraud%2C+F%C3%A9lix&rft.date=2022-11-15&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2103.05962 |