K-Splits: Improved K-Means Clustering Algorithm to Automatically Detect the Number of Clusters
This paper introduces k-splits, an improved hierarchical algorithm based on k-means to cluster data without prior knowledge of the number of clusters. K-splits starts from a small number of clusters and uses the most significant data distribution axis to split these clusters incrementally into bette...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
24.05.2022
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper introduces k-splits, an improved hierarchical algorithm based on k-means to cluster data without prior knowledge of the number of clusters. K-splits starts from a small number of clusters and uses the most significant data distribution axis to split these clusters incrementally into better fits if needed. Accuracy and speed are two main advantages of the proposed method. We experiment on six synthetic benchmark datasets plus two real-world datasets MNIST and Fashion-MNIST, to prove that our algorithm has excellent accuracy in finding the correct number of clusters under different conditions. We also show that k-splits is faster than similar methods and can even be faster than the standard k-means in lower dimensions. Finally, we suggest using k-splits to uncover the exact position of centroids and then input them as initial points to the k-means algorithm to fine-tune the results. |
|---|---|
| AbstractList | This paper introduces k-splits, an improved hierarchical algorithm based on k-means to cluster data without prior knowledge of the number of clusters. K-splits starts from a small number of clusters and uses the most significant data distribution axis to split these clusters incrementally into better fits if needed. Accuracy and speed are two main advantages of the proposed method. We experiment on six synthetic benchmark datasets plus two real-world datasets MNIST and Fashion-MNIST, to prove that our algorithm has excellent accuracy in finding the correct number of clusters under different conditions. We also show that k-splits is faster than similar methods and can even be faster than the standard k-means in lower dimensions. Finally, we suggest using k-splits to uncover the exact position of centroids and then input them as initial points to the k-means algorithm to fine-tune the results. |
| Author | Bodaghi, Hossein Kalhor, Ahmad Mohammadi, Seyed Omid |
| Author_xml | – sequence: 1 givenname: Seyed surname: Mohammadi middlename: Omid fullname: Mohammadi, Seyed Omid – sequence: 2 givenname: Ahmad surname: Kalhor fullname: Kalhor, Ahmad – sequence: 3 givenname: Hossein surname: Bodaghi fullname: Bodaghi, Hossein |
| BookMark | eNo1kE1Lw0AYhBdRsNb-AG8LnlN33_3I1luIVkurHuzZssm-bVOSbM1uiv57A-ppYGCeYeaKnLe-RUJuOJtKoxS7s91XdZoCHwwmtWZnZARC8MRIgEsyCeHAGAOdglJiRD6WyfuxrmK4p4vm2PkTOrpMXtC2geZ1HyJ2VbujWb3zXRX3DY2eZn30jY1Vaev6mz5gxDLSuEf62jcFdtRv_6PhmlxsbR1w8qdjsp4_rvPnZPX2tMizVWIVmEQ5jkoz5qx2zJRb4dJUSl3MrEZwXEkhEFUx46WTUJSp1QBaWLApV0woLcbk9hc7LPjsMcTNwfddOzRuQJnhCjMzRvwAyPJWdQ |
| ContentType | Paper |
| Copyright | 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2110.04660 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a528-5d1e5600da6d08cf3d77446b9a6e2d15433ee5b91cd42bc7a62263a2a71503563 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:29:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a528-5d1e5600da6d08cf3d77446b9a6e2d15433ee5b91cd42bc7a62263a2a71503563 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2581108988?pq-origsite=%requestingapplication% |
| PQID | 2581108988 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2581108988 |
| PublicationCentury | 2000 |
| PublicationDate | 20220524 |
| PublicationDateYYYYMMDD | 2022-05-24 |
| PublicationDate_xml | – month: 05 year: 2022 text: 20220524 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2022 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7954078 |
| SecondaryResourceType | preprint |
| Snippet | This paper introduces k-splits, an improved hierarchical algorithm based on k-means to cluster data without prior knowledge of the number of clusters. K-splits... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Centroids Cluster analysis Clustering Datasets Vector quantization |
| Title | K-Splits: Improved K-Means Clustering Algorithm to Automatically Detect the Number of Clusters |
| URI | https://www.proquest.com/docview/2581108988 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEN0oaOLJ7_iBZA9eF_rdrReDiNEgTSPE4EWy7G6VpFJsC9F_7-xS1JMXj03TTbNNZ97MvH0PoXPqxEwyZhDpCIM4ytokoFIQaXjUpgDwY03GfLz3w5AOh0FUNtzykla5iok6UIuUqx5503KpYqwHlF7O3olyjVLT1dJCYx1VlUqCqal7_e8ei-X5gJjt5TBTS3c1WfYxWTRU1dOAyrAUpvwdgnVeudn-7xvtoGrEZjLbRWtyuoc2NZ-T5_vouUv6AC-L_AIv2wZS4C7pSUhMuJ3MlToC5CzcSl5gxeL1DRcpbs2LVAu4siT5xNdSjRcw4EMcatcQnMarR_MDNLjpDNq3pLRSIMy1KHGFKRW0EcwTBuWxLQD1Od44YJ60BKAo25bSHQcmF4415j7zAJXZzGI-4EXb9exDVJmmU3mEsO-4MeO-KQwXKrfACQzOAlhVckh0UD8eo9pqt0bl75CPfrbq5O_bp2jLUucLDJdYTg1Vimwuz9AGXxSTPKuj6lUnjB7q-ivDVXTXi56-ACxmsdI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxsxEB2lQAUnWtqKUmh9gKOTjffLroQQCkVBCRFSoopTI8eeLUghS7ObtPlR_EfGThZ66o1Dz6u15B3vzHsz43kAhzLKNGodcIxswCMnbaIkWo5BIkNJAD_zzZjfu2mvJ6-v1VUNHqq7MK6tsvKJ3lHb3LgceUPE0nWsKylP7n9xpxrlqquVhMbyWHRw8ZsoW3F8cUb2PRLi_Nug1eYrVQGuYyF5bJvoorzViQ2kyUJLAChKRkonKCwBijBEjEeqaWwkRibVCQGUUAudEnQK4ySkZV_BOqEIoXynYP8ppSOSlAB6uKyd-klhDT39czuvO5JVJyK6moP5t8f3Yex8-z_7AG9g_Urf4_Qt1HCyA699t6op3sGPDu8TeC6Lr2yZFEHLOvwSKeyy1njmZj9QRGan45-0gfLmjpU5O52VuR9Pq8fjBTtDVzxhhH5Zz2uisDyrXi3ew-AldvQB1ib5BHeBpVGcaZM2bRATL1WRCoxWtCoaCuPEjj_CfmWc4epnL4bPltn79-MvsNkeXHaH3Yte5xNsCXeTIoi5iPZhrZzO8AA2zLy8Laaf_cFiMHxhOz4CxXoIgA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K-Splits%3A+Improved+K-Means+Clustering+Algorithm+to+Automatically+Detect+the+Number+of+Clusters&rft.jtitle=arXiv.org&rft.au=Mohammadi%2C+Seyed+Omid&rft.au=Kalhor%2C+Ahmad&rft.au=Bodaghi%2C+Hossein&rft.date=2022-05-24&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2110.04660 |