Subresultants of Several Univariate Polynomials in Newton Basis
In this paper, we consider the problem of formulating the subresultant polynomials for several univariate polynomials in Newton basis. It is required that the resulting subresultant polynomials be expressed in the same Newton basis as that used in the input polynomials. To solve the problem, we devi...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
10.09.2024
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we consider the problem of formulating the subresultant polynomials for several univariate polynomials in Newton basis. It is required that the resulting subresultant polynomials be expressed in the same Newton basis as that used in the input polynomials. To solve the problem, we devise a particular matrix with the help of the companion matrix of a polynomial in Newton basis. Meanwhile, the concept of determinantal polynomial in power basis for formulating subresultant polynomials is extended to that in Newton basis. It is proved that the generalized determinantal polynomial of the specially designed matrix provides a new formula for the subresultant polynomial in Newton basis, which is equivalent to the subresultant polynomial in power basis. Furthermore, we show an application of the new formula in devising a basis-preserving method for computing the gcd of several Newton polynomials. |
|---|---|
| AbstractList | In this paper, we consider the problem of formulating the subresultant polynomials for several univariate polynomials in Newton basis. It is required that the resulting subresultant polynomials be expressed in the same Newton basis as that used in the input polynomials. To solve the problem, we devise a particular matrix with the help of the companion matrix of a polynomial in Newton basis. Meanwhile, the concept of determinantal polynomial in power basis for formulating subresultant polynomials is extended to that in Newton basis. It is proved that the generalized determinantal polynomial of the specially designed matrix provides a new formula for the subresultant polynomial in Newton basis, which is equivalent to the subresultant polynomial in power basis. Furthermore, we show an application of the new formula in devising a basis-preserving method for computing the gcd of several Newton polynomials. |
| Author | Yang, Jing Wang, Weidong |
| Author_xml | – sequence: 1 givenname: Weidong surname: Wang fullname: Wang, Weidong – sequence: 2 givenname: Jing surname: Yang fullname: Yang, Jing |
| BookMark | eNotjUFLxDAUhIMouK77A7wFPLe-vCRtehJdXBUWFarnJZumkKUmmrRV_70BPc0wfDNzRo598JaQCwalUFLClY7fbi4RGZbABeIRWSDnrFDZn5JVSgcAwKpGKfmCXLfTPto0DaP2Y6Khp62dbdQDffNu1tHp0dKXMPz48O70kKjz9Ml-jcHTW51cOicnfY7t6l-XpN3cva4fiu3z_eP6ZltoiaqQrFJoTQeosUIDoCpjqq5jHYhe9I0Sam8bA3VvVM2MMJnTEniXO4wbviSXf6sfMXxONo27Q5iiz4c7rIUCbBgo_gvSVExb |
| ContentType | Paper |
| Copyright | 2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2212.03422 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a528-51682ecd02a262c0086cc6dd1d04f4f9848be9c07fc871c4c2a2a503decd13c3 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:24:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a528-51682ecd02a262c0086cc6dd1d04f4f9848be9c07fc871c4c2a2a503decd13c3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2748029108?pq-origsite=%requestingapplication% |
| PQID | 2748029108 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2748029108 |
| PublicationCentury | 2000 |
| PublicationDate | 20240910 |
| PublicationDateYYYYMMDD | 2024-09-10 |
| PublicationDate_xml | – month: 09 year: 2024 text: 20240910 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2024 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8825024 |
| SecondaryResourceType | preprint |
| Snippet | In this paper, we consider the problem of formulating the subresultant polynomials for several univariate polynomials in Newton basis. It is required that the... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Polynomials |
| Title | Subresultants of Several Univariate Polynomials in Newton Basis |
| URI | https://www.proquest.com/docview/2748029108 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66KXjyN_6YowevdW2aNulJmGwo6CjOwzyN9CWBgrRz2Yb-9750nYIHLx5LWihJeO_7vry8j5BrRByYhbhC5AbGZxELfBmK3AdIAQyPlVx313_ko5GYTNKsEdxsU1a5iYl1oFYVOI28h-xJBBSTm7idvfvONcqdrjYWGtuk7bokhHXp3vhbY6EJR8QcrQ8z69ZdPTn_KFY3lDoJMGLOMvdXCK7zynD_v390QNqZnOn5IdnS5RHZres5wR4jBl8i17XLN2cSbL3KeGO9cvKT5yoxkB8jxPSy6u3T3UrGHegVpYfxDoGg15e2sCdkPBy83N37jVeCL2Mq_DhMBNWgAippQsERFYBEqVAFzDCTCiZynULADSBDAgb4noyDSOE3YQTRKWmVVanPiMc1TaUxsdK5YqkxOZOC5jwFnqc80sk56WxmY9psdzv9mYqLv4cvyR5FVOAKLsKgQ1qL-VJfkR1YLQo775J2fzDKnrv1KuJT9vCUvX4B4eepNA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwELWAguDELnZ8gGNo4jixfUBIbKJqqSq1h56onLEtVapaaGiBf-IjGactSBy49cA5ixIvM--Nn_0IOUPEgVlIGERu4AIe8zDQkcwCAAXgRGL05HT9mqjXZbutGgvkc7YXxssqZzGxCNRmAL5GXkb2JEOGyU1ePb8E3jXKr67OLDQmw6JqP96QsuWXlVvs33PG7u9aNw_B1FUg0AmTQRKlklkwIdMsZeAhPUBqTGRC7rhTksvMKgiFA-QSwAHv00kYG3wmiiHGty6SEoIIpgqhYPO7osNSgfg8niydFgeFlfXwvTu-YMwXHGPuDXp_Bfwii92v_6__3yClhn62w02yYPtbZKXQqkK-jfxihDw-H_W8AXJOB4427diX1qhXmSD3R_hMG4Peh99xjbOLdvsUYzmCXHqt826-Q5pz-OJdstQf9O0eocIypZ1LjM0MV85lXEuWCQUiUyK26T45mrV9ZzqV885Pwx_8ffmUrD60HmudWqVePSRrDNGPF5ZE4RFZeh2O7DFZhvFrNx-eFOOGkqf5dtMXKSkBgA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subresultants+of+Several+Univariate+Polynomials+in+Newton+Basis&rft.jtitle=arXiv.org&rft.au=Wang%2C+Weidong&rft.au=Yang%2C+Jing&rft.date=2024-09-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2212.03422 |