Auto-weighted Bayesian Physics-Informed Neural Networks and robust estimations for multitask inverse problems in pore-scale imaging of dissolution

In this article, we present a novel data assimilation strategy in pore-scale imaging and demonstrate that this makes it possible to robustly address reactive inverse problems incorporating Uncertainty Quantification (UQ). Pore-scale modeling of reactive flow offers a valuable opportunity to investig...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Perez, Sarah, Poncet, Philippe
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 17.08.2024
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article, we present a novel data assimilation strategy in pore-scale imaging and demonstrate that this makes it possible to robustly address reactive inverse problems incorporating Uncertainty Quantification (UQ). Pore-scale modeling of reactive flow offers a valuable opportunity to investigate the evolution of macro-scale properties subject to dynamic processes. Yet, they suffer from imaging limitations arising from the associated X-ray microtomography (X-ray microCT) process, which induces discrepancies in the properties estimates. Assessment of the kinetic parameters also raises challenges, as reactive coefficients are critical parameters that can cover a wide range of values. We account for these two issues and ensure reliable calibration of pore-scale modeling, based on dynamical microCT images, by integrating uncertainty quantification in the workflow. The present method is based on a multitasking formulation of reactive inverse problems combining data-driven and physics-informed techniques in calcite dissolution. This allows quantifying morphological uncertainties on the porosity field and estimating reactive parameter ranges through prescribed PDE models with a latent concentration field and dynamical microCT. The data assimilation strategy relies on sequential reinforcement incorporating successively additional PDE constraints. We guarantee robust and unbiased uncertainty quantification by straightforward adaptive weighting of Bayesian Physics-Informed Neural Networks (BPINNs), ensuring reliable micro-porosity changes during geochemical transformations. We demonstrate successful Bayesian Inference in 1D+Time and 2D+Time calcite dissolution based on synthetic microCT images with meaningful posterior distribution on the reactive parameters and dimensionless numbers.
AbstractList In this article, we present a novel data assimilation strategy in pore-scale imaging and demonstrate that this makes it possible to robustly address reactive inverse problems incorporating Uncertainty Quantification (UQ). Pore-scale modeling of reactive flow offers a valuable opportunity to investigate the evolution of macro-scale properties subject to dynamic processes. Yet, they suffer from imaging limitations arising from the associated X-ray microtomography (X-ray microCT) process, which induces discrepancies in the properties estimates. Assessment of the kinetic parameters also raises challenges, as reactive coefficients are critical parameters that can cover a wide range of values. We account for these two issues and ensure reliable calibration of pore-scale modeling, based on dynamical microCT images, by integrating uncertainty quantification in the workflow. The present method is based on a multitasking formulation of reactive inverse problems combining data-driven and physics-informed techniques in calcite dissolution. This allows quantifying morphological uncertainties on the porosity field and estimating reactive parameter ranges through prescribed PDE models with a latent concentration field and dynamical microCT. The data assimilation strategy relies on sequential reinforcement incorporating successively additional PDE constraints. We guarantee robust and unbiased uncertainty quantification by straightforward adaptive weighting of Bayesian Physics-Informed Neural Networks (BPINNs), ensuring reliable micro-porosity changes during geochemical transformations. We demonstrate successful Bayesian Inference in 1D+Time and 2D+Time calcite dissolution based on synthetic microCT images with meaningful posterior distribution on the reactive parameters and dimensionless numbers.
Author Poncet, Philippe
Perez, Sarah
Author_xml – sequence: 1
  givenname: Sarah
  surname: Perez
  fullname: Perez, Sarah
– sequence: 2
  givenname: Philippe
  surname: Poncet
  fullname: Poncet, Philippe
BookMark eNotj81OwzAQhC0EEqX0AbhZ4pzi2HFsH0vFT6UKOPReOYnTuk3s4nVa-ho8MUZwGml3dna-G3TpvDMI3eVkWkjOyYMOX_Y4pYzIaU5lWVygEWUsz2RB6TWaAOwIIbQUlHM2Qt-zIfrsZOxmG02DH_XZgNUOf2zPYGvIFq71oU-bNzME3SWJJx_2gLVrcPDVABEbiLbX0XoHOLlxP3TRRg17bN3RBDD4kJyd6SEN8MEHk0GtO4PT1ca6DfYtbiyA74bfkFt01eoOzORfx2j1_LSav2bL95fFfLbMNKcyKyreCFlUSkqpmVKiLhKRzmnJaJ5QTVm1iosy50VTC0INM0oK0jRMtaRuFRuj-7_YVO5zSAzrnR-CSx_XVHKRl0wwyX4AtatrOw
ContentType Paper
Copyright 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2308.12864
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database (Proquest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PUEGO
ID FETCH-LOGICAL-a528-4b5d784b9888a3997c4255a126321422e6bf9576154dc702e3e9870dd39f0cf93
IEDL.DBID BENPR
IngestDate Sun Sep 28 14:45:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a528-4b5d784b9888a3997c4255a126321422e6bf9576154dc702e3e9870dd39f0cf93
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2857163738?pq-origsite=%requestingapplication%
PQID 2857163738
PQPubID 2050157
ParticipantIDs proquest_journals_2857163738
PublicationCentury 2000
PublicationDate 20240817
PublicationDateYYYYMMDD 2024-08-17
PublicationDate_xml – month: 08
  year: 2024
  text: 20240817
  day: 17
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8799841
SecondaryResourceType preprint
Snippet In this article, we present a novel data assimilation strategy in pore-scale imaging and demonstrate that this makes it possible to robustly address reactive...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Bayesian analysis
Calcite
Data assimilation
Dimensionless numbers
Dissolution
Imaging
Inverse problems
Mathematical models
Modelling
Multitasking
Neural networks
Parameters
Physics
Porosity
Robustness
Statistical inference
Uncertainty
Workflow
X ray microtomography
Title Auto-weighted Bayesian Physics-Informed Neural Networks and robust estimations for multitask inverse problems in pore-scale imaging of dissolution
URI https://www.proquest.com/docview/2857163738
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWgBYmJt3iUygOrqZukeUyIoiIYqCLoUKbKr0gVKClxWuA3-GLuTV2QGFiYosROFDn2zfHx8bmEnHel4irINAsTyVmQBQGTIc-Y1jzoagDYHtd1soloOIzH4yR1hJt1sspVTKwDtS4UcuQdL-4BtEcfnsvZK8OsUbi66lJorJMmOpUFDdLsD4bpwzfL4oURYGZ_uZxZm3d1RPk-XaD-Ob6A2IxOA7-CcP1nudn-7zvtkGYqZqbcJWsm3yObtaJT2X3yeTWvCvZWM59G0774MLhfkroKbLkPCUrQnkO8wKHWg1sqck3LQs5tRdGBY7m10VKoTWv1YSXsM53mKOcw1OWjsXCBApI3zMI3NxTuwuRHtMgoLvi77n1ARjeD0fUtcwkYmOgh6SZ7OooDmcAsWQCQiRQM8J7oosU7UkcmlFkC8xVAYVpF3DO-SWD4a-0nGVdZ4h-SRl7k5ohQ6ftccRMlCh6YKQWoSEjlh7GCoKF875i0Vi08cYPITn6a9-Tv4lOy5QHWQKq3G7VIoyrn5oxsqEU1tWXb9Yk2yjof4Sy9u0-fvgBd8MgZ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELYQBcHEW7zxAKPBTdI8BoR4CgRUlejAVvkVqQIlJU5b-jf4H_xH7twUJAa2DkyRYseD73K-O3_3HSGHdam4ClLNwkRyFqRBwGTIU6Y1D-oaHGyPa9dsImo24-fnpDVDPie1MAirnNhEZ6h1rjBHfuLFDXDtkYfnrPfGsGsU3q5OWmiM1eLejIYQstnTuyuQ75Hn3Vy3L29Z1VWAiQZmkmRDR3EgEwj9BJzOkQKtbYg68pZjPsSEMk3ACQfXQquIe8Y3EJZzrf0k5SpF7iWw-LUAjb9DCj59p3S8MIKl_PHdqWMKOxHFe3eAYOv4GA4CpDX4ZfHdMXaz9M82YJnUWqJnihUyY7JVMu_QqsqukY_zfpmzocvqGk0vxMhgLSitJrBxjRWMIPWIeIWHw7pbKjJNi1z2bUmRXWRctmkpzKYOWVkK-0K7GUJVDK167Vh4QSFKMcyCPhsKX2FjJ5qnFMEM1a-7TtrT2IUNMpvlmdkkVPo-V9xEiYIFU6XA4xNS-WGswCAq39siuxOBdioDYTs_0tz-e_iALNy2Hx86D3fN-x2y6IFPhSnterRLZsuib_bInBqUXVvsO2WkpDNl2X8Bt9QcdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-weighted+Bayesian+Physics-Informed+Neural+Networks+and+robust+estimations+for+multitask+inverse+problems+in+pore-scale+imaging+of+dissolution&rft.jtitle=arXiv.org&rft.au=Perez%2C+Sarah&rft.au=Poncet%2C+Philippe&rft.date=2024-08-17&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2308.12864