Auto-weighted Bayesian Physics-Informed Neural Networks and robust estimations for multitask inverse problems in pore-scale imaging of dissolution
In this article, we present a novel data assimilation strategy in pore-scale imaging and demonstrate that this makes it possible to robustly address reactive inverse problems incorporating Uncertainty Quantification (UQ). Pore-scale modeling of reactive flow offers a valuable opportunity to investig...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
17.08.2024
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this article, we present a novel data assimilation strategy in pore-scale imaging and demonstrate that this makes it possible to robustly address reactive inverse problems incorporating Uncertainty Quantification (UQ). Pore-scale modeling of reactive flow offers a valuable opportunity to investigate the evolution of macro-scale properties subject to dynamic processes. Yet, they suffer from imaging limitations arising from the associated X-ray microtomography (X-ray microCT) process, which induces discrepancies in the properties estimates. Assessment of the kinetic parameters also raises challenges, as reactive coefficients are critical parameters that can cover a wide range of values. We account for these two issues and ensure reliable calibration of pore-scale modeling, based on dynamical microCT images, by integrating uncertainty quantification in the workflow. The present method is based on a multitasking formulation of reactive inverse problems combining data-driven and physics-informed techniques in calcite dissolution. This allows quantifying morphological uncertainties on the porosity field and estimating reactive parameter ranges through prescribed PDE models with a latent concentration field and dynamical microCT. The data assimilation strategy relies on sequential reinforcement incorporating successively additional PDE constraints. We guarantee robust and unbiased uncertainty quantification by straightforward adaptive weighting of Bayesian Physics-Informed Neural Networks (BPINNs), ensuring reliable micro-porosity changes during geochemical transformations. We demonstrate successful Bayesian Inference in 1D+Time and 2D+Time calcite dissolution based on synthetic microCT images with meaningful posterior distribution on the reactive parameters and dimensionless numbers. |
|---|---|
| AbstractList | In this article, we present a novel data assimilation strategy in pore-scale imaging and demonstrate that this makes it possible to robustly address reactive inverse problems incorporating Uncertainty Quantification (UQ). Pore-scale modeling of reactive flow offers a valuable opportunity to investigate the evolution of macro-scale properties subject to dynamic processes. Yet, they suffer from imaging limitations arising from the associated X-ray microtomography (X-ray microCT) process, which induces discrepancies in the properties estimates. Assessment of the kinetic parameters also raises challenges, as reactive coefficients are critical parameters that can cover a wide range of values. We account for these two issues and ensure reliable calibration of pore-scale modeling, based on dynamical microCT images, by integrating uncertainty quantification in the workflow. The present method is based on a multitasking formulation of reactive inverse problems combining data-driven and physics-informed techniques in calcite dissolution. This allows quantifying morphological uncertainties on the porosity field and estimating reactive parameter ranges through prescribed PDE models with a latent concentration field and dynamical microCT. The data assimilation strategy relies on sequential reinforcement incorporating successively additional PDE constraints. We guarantee robust and unbiased uncertainty quantification by straightforward adaptive weighting of Bayesian Physics-Informed Neural Networks (BPINNs), ensuring reliable micro-porosity changes during geochemical transformations. We demonstrate successful Bayesian Inference in 1D+Time and 2D+Time calcite dissolution based on synthetic microCT images with meaningful posterior distribution on the reactive parameters and dimensionless numbers. |
| Author | Poncet, Philippe Perez, Sarah |
| Author_xml | – sequence: 1 givenname: Sarah surname: Perez fullname: Perez, Sarah – sequence: 2 givenname: Philippe surname: Poncet fullname: Poncet, Philippe |
| BookMark | eNotj81OwzAQhC0EEqX0AbhZ4pzi2HFsH0vFT6UKOPReOYnTuk3s4nVa-ho8MUZwGml3dna-G3TpvDMI3eVkWkjOyYMOX_Y4pYzIaU5lWVygEWUsz2RB6TWaAOwIIbQUlHM2Qt-zIfrsZOxmG02DH_XZgNUOf2zPYGvIFq71oU-bNzME3SWJJx_2gLVrcPDVABEbiLbX0XoHOLlxP3TRRg17bN3RBDD4kJyd6SEN8MEHk0GtO4PT1ca6DfYtbiyA74bfkFt01eoOzORfx2j1_LSav2bL95fFfLbMNKcyKyreCFlUSkqpmVKiLhKRzmnJaJ5QTVm1iosy50VTC0INM0oK0jRMtaRuFRuj-7_YVO5zSAzrnR-CSx_XVHKRl0wwyX4AtatrOw |
| ContentType | Paper |
| Copyright | 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2308.12864 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database (Proquest) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PUEGO |
| ID | FETCH-LOGICAL-a528-4b5d784b9888a3997c4255a126321422e6bf9576154dc702e3e9870dd39f0cf93 |
| IEDL.DBID | BENPR |
| IngestDate | Sun Sep 28 14:45:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a528-4b5d784b9888a3997c4255a126321422e6bf9576154dc702e3e9870dd39f0cf93 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2857163738?pq-origsite=%requestingapplication% |
| PQID | 2857163738 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2857163738 |
| PublicationCentury | 2000 |
| PublicationDate | 20240817 |
| PublicationDateYYYYMMDD | 2024-08-17 |
| PublicationDate_xml | – month: 08 year: 2024 text: 20240817 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2024 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8799841 |
| SecondaryResourceType | preprint |
| Snippet | In this article, we present a novel data assimilation strategy in pore-scale imaging and demonstrate that this makes it possible to robustly address reactive... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Bayesian analysis Calcite Data assimilation Dimensionless numbers Dissolution Imaging Inverse problems Mathematical models Modelling Multitasking Neural networks Parameters Physics Porosity Robustness Statistical inference Uncertainty Workflow X ray microtomography |
| Title | Auto-weighted Bayesian Physics-Informed Neural Networks and robust estimations for multitask inverse problems in pore-scale imaging of dissolution |
| URI | https://www.proquest.com/docview/2857163738 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWgBYmJt3iUygOrqZukeUyIoiIYqCLoUKbKr0gVKClxWuA3-GLuTV2QGFiYosROFDn2zfHx8bmEnHel4irINAsTyVmQBQGTIc-Y1jzoagDYHtd1soloOIzH4yR1hJt1sspVTKwDtS4UcuQdL-4BtEcfnsvZK8OsUbi66lJorJMmOpUFDdLsD4bpwzfL4oURYGZ_uZxZm3d1RPk-XaD-Ob6A2IxOA7-CcP1nudn-7zvtkGYqZqbcJWsm3yObtaJT2X3yeTWvCvZWM59G0774MLhfkroKbLkPCUrQnkO8wKHWg1sqck3LQs5tRdGBY7m10VKoTWv1YSXsM53mKOcw1OWjsXCBApI3zMI3NxTuwuRHtMgoLvi77n1ARjeD0fUtcwkYmOgh6SZ7OooDmcAsWQCQiRQM8J7oosU7UkcmlFkC8xVAYVpF3DO-SWD4a-0nGVdZ4h-SRl7k5ohQ6ftccRMlCh6YKQWoSEjlh7GCoKF875i0Vi08cYPITn6a9-Tv4lOy5QHWQKq3G7VIoyrn5oxsqEU1tWXb9Yk2yjof4Sy9u0-fvgBd8MgZ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELYQBcHEW7zxAKPBTdI8BoR4CgRUlejAVvkVqQIlJU5b-jf4H_xH7twUJAa2DkyRYseD73K-O3_3HSGHdam4ClLNwkRyFqRBwGTIU6Y1D-oaHGyPa9dsImo24-fnpDVDPie1MAirnNhEZ6h1rjBHfuLFDXDtkYfnrPfGsGsU3q5OWmiM1eLejIYQstnTuyuQ75Hn3Vy3L29Z1VWAiQZmkmRDR3EgEwj9BJzOkQKtbYg68pZjPsSEMk3ACQfXQquIe8Y3EJZzrf0k5SpF7iWw-LUAjb9DCj59p3S8MIKl_PHdqWMKOxHFe3eAYOv4GA4CpDX4ZfHdMXaz9M82YJnUWqJnihUyY7JVMu_QqsqukY_zfpmzocvqGk0vxMhgLSitJrBxjRWMIPWIeIWHw7pbKjJNi1z2bUmRXWRctmkpzKYOWVkK-0K7GUJVDK167Vh4QSFKMcyCPhsKX2FjJ5qnFMEM1a-7TtrT2IUNMpvlmdkkVPo-V9xEiYIFU6XA4xNS-WGswCAq39siuxOBdioDYTs_0tz-e_iALNy2Hx86D3fN-x2y6IFPhSnterRLZsuib_bInBqUXVvsO2WkpDNl2X8Bt9QcdQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-weighted+Bayesian+Physics-Informed+Neural+Networks+and+robust+estimations+for+multitask+inverse+problems+in+pore-scale+imaging+of+dissolution&rft.jtitle=arXiv.org&rft.au=Perez%2C+Sarah&rft.au=Poncet%2C+Philippe&rft.date=2024-08-17&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2308.12864 |