Physics-Informed Machine Learning Approach for Augmenting Turbulence Models: A Comprehensive Framework

Reynolds-averaged Navier-Stokes (RANS) equations are widely used in engineering turbulent flow simulations. However, RANS predictions may have large discrepancies due to the uncertainties in modeled Reynolds stresses. Recently, Wang et al. demonstrated that machine learning can be used to improve th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Jin-Long, Wu, Xiao, Heng, Paterson, Eric
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 09.09.2018
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Reynolds-averaged Navier-Stokes (RANS) equations are widely used in engineering turbulent flow simulations. However, RANS predictions may have large discrepancies due to the uncertainties in modeled Reynolds stresses. Recently, Wang et al. demonstrated that machine learning can be used to improve the RANS modeled Reynolds stresses by leveraging data from high fidelity simulations (Physics informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Physical Review Fluids. 2, 034603, 2017). However, solving for mean flows from the improved Reynolds stresses still poses significant challenges due to potential ill-conditioning of RANS equations with Reynolds stress closures. Enabling improved predictions of mean velocities are of profound practical importance, because often the velocity and its derived quantities (QoIs, e.g., drag, lift, surface friction), and not the Reynolds stress itself, are of ultimate interest in RANS simulations. To this end, we present a comprehensive framework for augmenting turbulence models with physics-informed machine learning, illustrating a complete workflow from identification of input features to final prediction of mean velocities. This work has two innovations. First, we demonstrate a systematic procedure to generate mean flow features based on the integrity basis for mean flow tensors. Second, we propose using machine learning to predict linear and nonlinear parts of the Reynolds stress tensor separately. Inspired by the finite polynomial representation of tensors in classical turbulence modeling, such a decomposition is instrumental in overcoming the ill-conditioning of RANS equations. Numerical tests demonstrated merits of the proposed framework.
AbstractList Reynolds-averaged Navier-Stokes (RANS) equations are widely used in engineering turbulent flow simulations. However, RANS predictions may have large discrepancies due to the uncertainties in modeled Reynolds stresses. Recently, Wang et al. demonstrated that machine learning can be used to improve the RANS modeled Reynolds stresses by leveraging data from high fidelity simulations (Physics informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Physical Review Fluids. 2, 034603, 2017). However, solving for mean flows from the improved Reynolds stresses still poses significant challenges due to potential ill-conditioning of RANS equations with Reynolds stress closures. Enabling improved predictions of mean velocities are of profound practical importance, because often the velocity and its derived quantities (QoIs, e.g., drag, lift, surface friction), and not the Reynolds stress itself, are of ultimate interest in RANS simulations. To this end, we present a comprehensive framework for augmenting turbulence models with physics-informed machine learning, illustrating a complete workflow from identification of input features to final prediction of mean velocities. This work has two innovations. First, we demonstrate a systematic procedure to generate mean flow features based on the integrity basis for mean flow tensors. Second, we propose using machine learning to predict linear and nonlinear parts of the Reynolds stress tensor separately. Inspired by the finite polynomial representation of tensors in classical turbulence modeling, such a decomposition is instrumental in overcoming the ill-conditioning of RANS equations. Numerical tests demonstrated merits of the proposed framework.
Author Paterson, Eric
Xiao, Heng
Jin-Long, Wu
Author_xml – sequence: 1
  givenname: Wu
  surname: Jin-Long
  fullname: Jin-Long, Wu
– sequence: 2
  givenname: Heng
  surname: Xiao
  fullname: Xiao, Heng
– sequence: 3
  givenname: Eric
  surname: Paterson
  fullname: Paterson, Eric
BookMark eNotj0tLw0AUhQdRsNb-AHcDrlMn88rEXShWCym66L7cZm6a1GSmzjRV_70RXR34OJzHDbl03iEhdymbS6MUe4Dw1Z7nqWHpnPFM8wsy4UKkiZGcX5NZjAfGGNcZV0pMSP3WfMe2isnK1T70aOkaqqZ1SEuE4Fq3p8XxGPwI6WigxbDv0Z1--WYIu6FDVyFde4tdfKQFXfj-GLBBF9sz0mWAHj99eL8lVzV0EWf_OiWb5dNm8ZKUr8-rRVEmoLhJhJEM0hyslTbVVlQ202AN1EzLSjAr8zq3lldiZzlwiVJLgTuoRW4hM-PLKbn_ix0XfwwYT9uDH4IbG7ecZcKoTCsjfgC871sl
ContentType Paper
Copyright 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1801.02762
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a528-3840a19add4d16d3cd76ad8af064c30d49f9dd2c3bd2a24e4643ebaf39da78233
IEDL.DBID M7S
IngestDate Mon Jun 30 09:44:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a528-3840a19add4d16d3cd76ad8af064c30d49f9dd2c3bd2a24e4643ebaf39da78233
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2073857658?pq-origsite=%requestingapplication%
PQID 2073857658
PQPubID 2050157
ParticipantIDs proquest_journals_2073857658
PublicationCentury 2000
PublicationDate 20180909
PublicationDateYYYYMMDD 2018-09-09
PublicationDate_xml – month: 09
  year: 2018
  text: 20180909
  day: 09
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2018
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.6654035
SecondaryResourceType preprint
Snippet Reynolds-averaged Navier-Stokes (RANS) equations are widely used in engineering turbulent flow simulations. However, RANS predictions may have large...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Artificial intelligence
Closures
Computational fluid dynamics
Computer simulation
Fluid flow
Ill-conditioned problems (mathematics)
Machine learning
Mathematical analysis
Physics
Polynomials
Reynolds averaged Navier-Stokes method
Reynolds stress
Simulation
Tensors
Turbulence models
Turbulent flow
Workflow
Title Physics-Informed Machine Learning Approach for Augmenting Turbulence Models: A Comprehensive Framework
URI https://www.proquest.com/docview/2073857658
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWgBYmJt3iUygOrIY6dxGZBBbUCiVYRdChT5fhRKqG2JG3F52O7LkgMLGxxksG6Ua6Pr889B4BLKtNERkYirSOJqDIMFZgaxCURETEFN8Y3Cj9lvR4bDHgeCm5VoFWuc6JP1GoqXY3cVUIIs-A4YbezD-Rco9zparDQ2AR1p5KAPXXv5bvGEqeZRcxkdZjppbuuRfk5Xl5h5qU6M-eR8ysF-3Wls_vfGe2Bei5mutwHG3pyALY9n1NWh8CEK7RqN9IKdj1rUsMgqDqCraAmDu0LsLUYed6Qvd9f2ED7ViTojNLeqxvYgi5tlPptxXaHnTWj6wj0O-3-_QMKlgpIJDFDxG7nBOY2p1GFU0WkylKhmDAWmEgSKcoNVyqWpFCxiKmmFq_oQhjClbBQgpBjUJtMJ_oEQGykEiZhdvvo1jRZMClEQXVmOObS4FPQWEdtGH6LavgTsrO_H5-DHYtMPDEj4g1Qm5cLfQG25HI-rsomqN-1e_lz039tO8ofu_nrF6FcuO8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELaqFgQTb_Eo4AFGQxLnYSMhVAFVqz5UiQ7dKsePUgm1JWkL_Cj-I7aTgMTA1oEtcrLEd77v7vzdHQAXPg8D7iiOpHQ48oUiKHZ9hSjHzMEqpkrZQuF21O2SwYD2SuCzqIUxtMrCJlpDLabc5MhNJgQT7RwH5G72iszUKHO7WozQyNSiJT_edMiW3jYftHwvPa_-2L9voHyqAGKBRxDWEQ1zqT7WvnBDgbmIQiYIUxqbOXaETxUVwuM4Fh7zfOlryJYxU5gKptHU5D-1xa9oL8Kjlin49J3S8cJIO-g4uzu1ncKuWfI-Xl65xHYGjcxInl8W38JYfeufbcA2qPTYTCY7oCQnu2DdslV5ugdU_oSyYiopYMdyQiXM28WOYC3vlQ71B7C2GFlWlF7vL7Qa2UIraMbAvaQ3sAaNUUzkc8blh_WCr7YP-qv4swNQnkwn8hBAV3HBVEB0cGwQm8eEMxb7MlLUpVy5R6BaCGmYH_p0-COh479fn4ONRr_THrab3dYJ2NQ-mKWgOLQKyvNkIU_BGl_Ox2lyZhUMguGK5fkFi7sTFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-Informed+Machine+Learning+Approach+for+Augmenting+Turbulence+Models%3A+A+Comprehensive+Framework&rft.jtitle=arXiv.org&rft.au=Jin-Long%2C+Wu&rft.au=Xiao%2C+Heng&rft.au=Paterson%2C+Eric&rft.date=2018-09-09&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1801.02762