Combining Set Propagation with Finite Element Methods for Time Integration in Transient Solid Mechanics Problems

The Finite Element Method (FEM) is the gold standard for spatial discretization in numerical simulations for a wide spectrum of real-world engineering problems. Prototypical areas of interest include linear heat transfer and linear structural dynamics problems modeled with partial differential equat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: ets, Marcelo, Daniel Freire Caporale, Pérez Zerpa, Jorge M
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 25.08.2021
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Finite Element Method (FEM) is the gold standard for spatial discretization in numerical simulations for a wide spectrum of real-world engineering problems. Prototypical areas of interest include linear heat transfer and linear structural dynamics problems modeled with partial differential equations (PDEs). While different algorithms for direct integration of the equations of motion exist, exploring all feasible behaviors for varying loads, initial states and fluxes in models with large numbers of degrees of freedom remains a challenging task. In this article we propose a novel approach, based in set propagation methods and motivated by recent advances in the field of Reachability Analysis. Assuming a set of initial states and inputs, the proposed method consists in the construction of a union of sets (flowpipe) that enclose the infinite number of solutions of the spatially discretized PDE. We present the numerical results obtained in five examples to illustrate the capabilities of our approach, and compare its performance against reference numerical integration methods. We conclude that, for problems with single known initial conditions, the proposed method is accurate. For problems with uncertain initial conditions included in sets, the proposed method can compute all the solutions of the system more efficiently than numerical integration methods.
AbstractList The Finite Element Method (FEM) is the gold standard for spatial discretization in numerical simulations for a wide spectrum of real-world engineering problems. Prototypical areas of interest include linear heat transfer and linear structural dynamics problems modeled with partial differential equations (PDEs). While different algorithms for direct integration of the equations of motion exist, exploring all feasible behaviors for varying loads, initial states and fluxes in models with large numbers of degrees of freedom remains a challenging task. In this article we propose a novel approach, based in set propagation methods and motivated by recent advances in the field of Reachability Analysis. Assuming a set of initial states and inputs, the proposed method consists in the construction of a union of sets (flowpipe) that enclose the infinite number of solutions of the spatially discretized PDE. We present the numerical results obtained in five examples to illustrate the capabilities of our approach, and compare its performance against reference numerical integration methods. We conclude that, for problems with single known initial conditions, the proposed method is accurate. For problems with uncertain initial conditions included in sets, the proposed method can compute all the solutions of the system more efficiently than numerical integration methods.
Author Pérez Zerpa, Jorge M
ets, Marcelo
Daniel Freire Caporale
Author_xml – sequence: 1
  givenname: Marcelo
  surname: ets
  fullname: ets, Marcelo
– sequence: 2
  fullname: Daniel Freire Caporale
– sequence: 3
  givenname: Jorge
  surname: Pérez Zerpa
  middlename: M
  fullname: Pérez Zerpa, Jorge M
BookMark eNotj8FOAjEURRujiYh8gLsmrgfb13ZaloaAkmA0YfakHV6hBFqcFvXzHYOrt7jnnpt3R65jikjIA2djaZRiT7b7CV9j4EyNmTKSX5EBCMErIwFuySjnPWMMag1KiQE5TdPRhRjilq6w0I8unezWlpAi_Q5lR-d9VpDODnjEWOgbll3aZOpTR5twRLqIBbfdpRAibTobc_gjV-kQNj3f7mwMbf4zu16S78mNt4eMo_87JM181kxfq-X7y2L6vKysAlOBFxO34a2ykqH2nAsJrbDGoZKTugZgXoLWznndP-3AMo4I4GsFNXPaiSF5vGhPXfo8Yy7rfTp3sV9cQ89IbcAY8Qt06l2P
ContentType Paper
Copyright 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2105.05841
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a528-2f39bd1c5a40e7f11342c3a8be54966220f4277bbf7855b2a01ee22f65260b7b3
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:33:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a528-2f39bd1c5a40e7f11342c3a8be54966220f4277bbf7855b2a01ee22f65260b7b3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2526478288?pq-origsite=%requestingapplication%
PQID 2526478288
PQPubID 2050157
ParticipantIDs proquest_journals_2526478288
PublicationCentury 2000
PublicationDate 20210825
PublicationDateYYYYMMDD 2021-08-25
PublicationDate_xml – month: 08
  year: 2021
  text: 20210825
  day: 25
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7679105
SecondaryResourceType preprint
Snippet The Finite Element Method (FEM) is the gold standard for spatial discretization in numerical simulations for a wide spectrum of real-world engineering...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Discretization
Equations of motion
Finite element method
Fluxes
Mathematical models
Numerical integration
Numerical methods
Partial differential equations
Propagation
Solid mechanics
Time integration
Title Combining Set Propagation with Finite Element Methods for Time Integration in Transient Solid Mechanics Problems
URI https://www.proquest.com/docview/2526478288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLagBYmJWxyl8sCa4jhOnExIoFZ0aBXRDmWqbMdBkVBaklLx83nPTWFAYmGMctnPevfxEXILOjELMqk8bcE3EQkmCUXCPJOFhithMpvkDmxCjsfxbJakTcCtbsoqtzLRCepsYTBGfsdDjm2RPI7vl-8eokZhdrWB0NglbZxUJlqk_dAfp8_fURYeSbCZg0060w3vulPVZ7HugacT9hhoX_-XEHaaZXD43zUdkXaqlrY6Jju2PCH7rqLT1KdkCZyuHfoDndgVTSvwjl_dMVCMvdJBgdYm7W_Kx-nIIUnXFGxYim0hdNjMkcAXipI6nYa9k3SyeCsyeB5bhuFP-GWEpKnPyHTQnz4-eQ28gqdCDuyRB4nOfBMqwazMfT8Q3AQq1hZcxijinOWCS6l1LoFumivmW8t5HsGmmZY6OCetclHaC0KNDqVvjG9FbATaPDYDMcGZsqHiLM4vSWdLv3nDIvX8h3hXf9--JgccC0kYrDnskNaq-rA3ZM-sV0VddZsT72LR5gSu0uEoffkC8LC6dA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxsxEB2loVU58a1CKfgAxwXvrB3vHlAPQJQIEkUiB3qKbK-3WqlKwm6g5UfxHxk7CRyQuHHoeXfttWf0ZsYz4wdwRDYxT3KlI-MoNhGZTxKKjEc2lxa1sLnLikA2ofr99PY2GzTgadkL48sql5gYgDqfWH9GfooSfVskpunP6V3kWaN8dnVJoTFXiyv3-JdCtvqse0HyPUZsXw7PO9GCVSDSEkkriiQzeWylFtypIo4TgTbRqXEUKbVaiLwQqJQxhUqlNKh57Bxi0aL5uVEmoWE_wYogXU-bsDLo9ga_Xg51sKXIRU_m2dNwV9iprv6VDycUWMkTTsY-foP5wZC11_6zLVinpeupqzag4cab8CXUq9p6C6aEYyZwW7AbN2ODimL_30HJmD9ZZu3S-9Lscl4cz3qBJ7tm5KEz3_TCuotbMvwH5ZgFi-07Q9nN5E-Z0_u-IZpm8iN7wp16G4YfscYdaI4nY_cNmDVSxdbGTqRWeI_O5QSCyLWTGnla7ML-UlyjBQDUo1dZ7b3_-BC-doa969F1t3_1HVbRl8xw-n-5D81Zde9-wGf7MCvr6mChbAxGHyzbZz--EfM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Set+Propagation+with+Finite+Element+Methods+for+Time+Integration+in+Transient+Solid+Mechanics+Problems&rft.jtitle=arXiv.org&rft.au=ets%2C+Marcelo&rft.au=Daniel+Freire+Caporale&rft.au=P%C3%A9rez+Zerpa%2C+Jorge+M&rft.date=2021-08-25&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2105.05841