Twisting Kuperberg invariants via Fox calculus and Reidemeister torsion

We study Kuperberg invariants for sutured manifolds in the case of a semidirect product of an involutory Hopf superalgebra \(H\) with its automorphism group \(\text{Aut}(H)\). These are topological invariants of balanced sutured 3-manifolds endowed with a homomorphism of the fundamental group into \...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavný autor: Daniel López Neumann
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 08.06.2021
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We study Kuperberg invariants for sutured manifolds in the case of a semidirect product of an involutory Hopf superalgebra \(H\) with its automorphism group \(\text{Aut}(H)\). These are topological invariants of balanced sutured 3-manifolds endowed with a homomorphism of the fundamental group into \(\text{Aut}(H)\) and possibly with a \(\text{Spin}^c\) structure and a homology orientation. We show that these invariants are computed via a form of Fox calculus and that, if \(H\) is \(\mathbb{N}\)-graded, they can be extended in a canonical way to polynomial invariants. When \(H\) is an exterior algebra, we show that this invariant specializes to a refinement of the twisted relative Reidemeister torsion of sutured 3-manifolds. We also give an explanation of our Fox calculus formulas in terms of a particular Hopf group-algebra.
AbstractList We study Kuperberg invariants for sutured manifolds in the case of a semidirect product of an involutory Hopf superalgebra \(H\) with its automorphism group \(\text{Aut}(H)\). These are topological invariants of balanced sutured 3-manifolds endowed with a homomorphism of the fundamental group into \(\text{Aut}(H)\) and possibly with a \(\text{Spin}^c\) structure and a homology orientation. We show that these invariants are computed via a form of Fox calculus and that, if \(H\) is \(\mathbb{N}\)-graded, they can be extended in a canonical way to polynomial invariants. When \(H\) is an exterior algebra, we show that this invariant specializes to a refinement of the twisted relative Reidemeister torsion of sutured 3-manifolds. We also give an explanation of our Fox calculus formulas in terms of a particular Hopf group-algebra.
Author Daniel López Neumann
Author_xml – sequence: 1
  fullname: Daniel López Neumann
BookMark eNotkM1KAzEURoMoWGsfwF3A9YzJTTKTLqXYKhYEmX3Jz7WkjElNZsY-vhVdfatzDnw35DKmiITccVZLrRR7MPkUppovOa8ZLEFdkBkIwSstAa7JopQDYwyaFpQSM7LpvkMZQtzT1_GI2WLe0xAnk4OJQ6FTMHSdTtSZ3o39WKiJnr5j8PiJZw4zHVIuIcVbcvVh-oKL_52Tbv3UrZ6r7dvmZfW4rYwCXYFHrR1TlgE3zgmpGDdCK8-scI4jcO1aoxrdCHSy9VZrQCsltFa5hnkxJ_d_2mNOXyOWYXdIY47n4g4EF_L3Ai1-ABB6T3M
ContentType Paper
Copyright 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1911.02925
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a528-2de88c05b021acc34501a385d0b3cc1e218c7a56863ec47db882eb4427b5c60d3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:16:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a528-2de88c05b021acc34501a385d0b3cc1e218c7a56863ec47db882eb4427b5c60d3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2313448558?pq-origsite=%requestingapplication%
PQID 2313448558
PQPubID 2050157
ParticipantIDs proquest_journals_2313448558
PublicationCentury 2000
PublicationDate 20210608
PublicationDateYYYYMMDD 2021-06-08
PublicationDate_xml – month: 06
  year: 2021
  text: 20210608
  day: 08
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7603967
SecondaryResourceType preprint
Snippet We study Kuperberg invariants for sutured manifolds in the case of a semidirect product of an involutory Hopf superalgebra \(H\) with its automorphism group...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Automorphisms
Calculus
Invariants
Manifolds
Mathematical analysis
Polynomials
Title Twisting Kuperberg invariants via Fox calculus and Reidemeister torsion
URI https://www.proquest.com/docview/2313448558
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagBYmJt3iUygNraBLbsTMhgcpDiCoqHcpU-Yk6kJakDfx8ziGFAYmFMfIS-ey7786fvg-hc2hjE2GUClwqTEBFKgIhqQo8mCDCpZpTWZtN8MFAjMdp1gzcyoZWucqJdaI2M-1n5D3AIYR6JRNxOX8LvGuUf11tLDTWUdurJEQ1de_pe8YSJxwQM_l6zKylu3qy-JhWF9CkeKnONGa_UnBdV262__tHO6idybktdtGazffQZs3n1OU-uh29-8ubv-CHJax7Ehee5hU0xp73gqupxFB3MATIj_9KLHODh17y6tX6uBfYm_BAyA7Q6KY_ur4LGs-EQLIYzryxQuiQKSjdUmtCWRhJIpgJFdE6slDQNZcsEQmxmnKjAGBbRWnMFdNJaMghauWz3B4hrKgzXMWcKelo6pwA6KdS6L2Ni5zk5Bh1Vtsyac59OfnZk5O_l0_RVuzZIX6eITqotSiW9gxt6GoxLYsual_1B9mwW4cTvrL7x-z5EyBMrAc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VFgQTb_Eo4AHGQGs7sTMgBqAUFaoKOnSr_ArqQIAEWvhR_EfOaQsDElsHZktW5Pty99358x3AIaaxkbRaB0ksbcBlLAOpuA48mWAyiY3gqhg2Idpt2evFnRJ8Tt_CeFnl1CcWjto-GV8jP0EewrjvZCLPnl8CPzXK365OR2iMYdFyHyNM2fLT6wu07xGljcvueTOYTBUIVEgRFdZJaWqhxuCmjGE8rNUVk6GtaWZM3WHIM0KFkYyYM1xYjRTUac6p0KGJapbhtnNQQRZB40IpeP9d0qGRQILOxnenRaewE5W9D4bHmBP5zqAxDX95_CKMNZb_2QGsQKWjnl22CiWXrsFCoVY1-TpcdUfeNaUPpPWG616iRgbpENN-r-ohw4EiGFUJws8XN3OiUkvufEOvR-dRnRE_YggBuQHdWXz6JpTTp9RtAdE8sUJTEWqV8DhJJBJbHTvNbFJPlGDbUJ1aoT_5q_P-jwl2_l4-gMVm9_amf3Pdbu3CEvU6GF-5kVUov2Zvbg_mzfB1kGf7BYII9GdssC9uAwPD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twisting+Kuperberg+invariants+via+Fox+calculus+and+Reidemeister+torsion&rft.jtitle=arXiv.org&rft.au=Daniel+L%C3%B3pez+Neumann&rft.date=2021-06-08&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1911.02925