Twisting Kuperberg invariants via Fox calculus and Reidemeister torsion
We study Kuperberg invariants for sutured manifolds in the case of a semidirect product of an involutory Hopf superalgebra \(H\) with its automorphism group \(\text{Aut}(H)\). These are topological invariants of balanced sutured 3-manifolds endowed with a homomorphism of the fundamental group into \...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autor: | |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
08.06.2021
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study Kuperberg invariants for sutured manifolds in the case of a semidirect product of an involutory Hopf superalgebra \(H\) with its automorphism group \(\text{Aut}(H)\). These are topological invariants of balanced sutured 3-manifolds endowed with a homomorphism of the fundamental group into \(\text{Aut}(H)\) and possibly with a \(\text{Spin}^c\) structure and a homology orientation. We show that these invariants are computed via a form of Fox calculus and that, if \(H\) is \(\mathbb{N}\)-graded, they can be extended in a canonical way to polynomial invariants. When \(H\) is an exterior algebra, we show that this invariant specializes to a refinement of the twisted relative Reidemeister torsion of sutured 3-manifolds. We also give an explanation of our Fox calculus formulas in terms of a particular Hopf group-algebra. |
|---|---|
| Bibliografie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1911.02925 |