Tableless Calculation of Circular Functions on Dyadic Rationals

I would like to tell a story. A story about a beautiful mathematical relationship that elucidates the computational view on the classic subject of trigonometry. All stories need a language, and for this particular story an algorithmic language ought to do well. What makes a language algorithmic? Fro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autor: Kourzanov, Peter
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 02.07.2022
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:I would like to tell a story. A story about a beautiful mathematical relationship that elucidates the computational view on the classic subject of trigonometry. All stories need a language, and for this particular story an algorithmic language ought to do well. What makes a language algorithmic? From our perspective as the functional programming community, an algorithmic language provides means to express computation in terms of functions, with no implementation-imposed limitations. We develop a new algorithm for the computation of trigonometric functions on dyadic rationals, together with the language used to express it, in Scheme. We provide a mechanically-derived algorithm for the computation of the inverses of our target functions. We address efficiency and accuracy concerns that pertain to the implementation of the proposed algorithm either in hardware or software.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2207.00849