Algebraic Curve Interpolation for Intervals via Symbolic-Numeric Computation

Algebraic curve interpolation is described by specifying the location of N points in the plane and constructing an algebraic curve of a function f that should pass through them. In this paper, we propose a novel approach to construct the algebraic curve that interpolates a set of data (points or nei...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Dehbi, Lydia, Yang, Zhengfeng, Chao, Peng, Xu, Yaochen, Zeng, Zhenbing
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 20.05.2024
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Algebraic curve interpolation is described by specifying the location of N points in the plane and constructing an algebraic curve of a function f that should pass through them. In this paper, we propose a novel approach to construct the algebraic curve that interpolates a set of data (points or neighborhoods). This approach aims to search the polynomial with the smallest degree interpolating the given data. Moreover, the paper also presents an efficient method to reconstruct the algebraic curve of integer coefficients with the smallest degree and the least monomials that interpolates the provided data. The problems are converted into optimization problems and are solved via Lagrange multipliers methods and symbolic computation. Various examples are presented to illustrate the proposed approaches.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2407.07095