Finding Most Shattering Minimum Vertex Cuts of Polylogarithmic Size in Near-Linear Time

We show the first near-linear time randomized algorithms for listing all minimum vertex cuts of polylogarithmic size that separate the graph into at least three connected components (also known as shredders) and for finding the most shattering one, i.e., the one maximizing the number of connected co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Hua, Kevin, Li, Daniel, Park, Jaewoo, Saranurak, Thatchaphol
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 11.07.2024
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We show the first near-linear time randomized algorithms for listing all minimum vertex cuts of polylogarithmic size that separate the graph into at least three connected components (also known as shredders) and for finding the most shattering one, i.e., the one maximizing the number of connected components. Our algorithms break the quadratic time bound by Cheriyan and Thurimella (STOC'96) for both problems that has stood for more than two decades. Our work also removes a bottleneck to near-linear time algorithms for the vertex connectivity augmentation problem (Jordan '95). Note that it is necessary to list only minimum vertex cuts that separate the graph into at least three components because there can be an exponential number of minimum vertex cuts in general. To obtain near-linear time algorithms, we have extended techniques in local flow algorithms developed by Forster et al. (SODA'20) to list shredders on a local scale. We also exploit fast queries to a pairwise vertex connectivity oracle subject to vertex failures (Long and Saranurak FOCS'22, Kosinas ESA'23). This is the first application of connectivity oracles subject to vertex failures to speed up a static graph algorithm.
AbstractList We show the first near-linear time randomized algorithms for listing all minimum vertex cuts of polylogarithmic size that separate the graph into at least three connected components (also known as shredders) and for finding the most shattering one, i.e., the one maximizing the number of connected components. Our algorithms break the quadratic time bound by Cheriyan and Thurimella (STOC'96) for both problems that has stood for more than two decades. Our work also removes a bottleneck to near-linear time algorithms for the vertex connectivity augmentation problem (Jordan '95). Note that it is necessary to list only minimum vertex cuts that separate the graph into at least three components because there can be an exponential number of minimum vertex cuts in general. To obtain near-linear time algorithms, we have extended techniques in local flow algorithms developed by Forster et al. (SODA'20) to list shredders on a local scale. We also exploit fast queries to a pairwise vertex connectivity oracle subject to vertex failures (Long and Saranurak FOCS'22, Kosinas ESA'23). This is the first application of connectivity oracles subject to vertex failures to speed up a static graph algorithm.
Author Park, Jaewoo
Saranurak, Thatchaphol
Li, Daniel
Hua, Kevin
Author_xml – sequence: 1
  givenname: Kevin
  surname: Hua
  fullname: Hua, Kevin
– sequence: 2
  givenname: Daniel
  surname: Li
  fullname: Li, Daniel
– sequence: 3
  givenname: Jaewoo
  surname: Park
  fullname: Park, Jaewoo
– sequence: 4
  givenname: Thatchaphol
  surname: Saranurak
  fullname: Saranurak, Thatchaphol
BookMark eNotjU9LwzAcQIMoOOc-gLeA59ZfkqZpj1KcE-ofWNHjSNpky2gTTVOZfnqHenq8y3sX6NR5pxG6IpBmBedwI8PBfqY0A54CK4CcoBlljCRFRuk5WozjHgBoLijnbIbeltZ11m3xox8jXu9kjDr8unV2mAb8qkPUB1xNccTe4Bfff_V-K4ONu8G2eG2_NbYOP2kZktq6I3BjB32JzozsR7345xw1y7umWiX18_1DdVsnklORGK4y00nDOBBV5rkR0BYKikIaKYUuc6OAM9a1bdcqTYXqcqKkJKXRBjIBbI6u_7LvwX9MeoybvZ-COx43DDillNBSsB-4UlXF
ContentType Paper
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2405.03801
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a527-f5b4fdaf3501b966f70c8b088afaa7e96fb0533dccdcbe27bd61baa19fef04703
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:25:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-f5b4fdaf3501b966f70c8b088afaa7e96fb0533dccdcbe27bd61baa19fef04703
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/3052221297?pq-origsite=%requestingapplication%
PQID 3052221297
PQPubID 2050157
ParticipantIDs proquest_journals_3052221297
PublicationCentury 2000
PublicationDate 20240711
PublicationDateYYYYMMDD 2024-07-11
PublicationDate_xml – month: 07
  year: 2024
  text: 20240711
  day: 11
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8760817
SecondaryResourceType preprint
Snippet We show the first near-linear time randomized algorithms for listing all minimum vertex cuts of polylogarithmic size that separate the graph into at least...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Connectivity
Graph theory
Local flow
Office equipment
Shredding
Title Finding Most Shattering Minimum Vertex Cuts of Polylogarithmic Size in Near-Linear Time
URI https://www.proquest.com/docview/3052221297
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA-6KXjyjY85cvDarY-0aU-Cw6HgSnFjztPI0wVcO9tuDP96k9rpQfDiKYRcQpLv9-X3PQG49njocY8jTXIotxAixDLtrCzuYSK4dDmugjHHjziOw8kkSmqDW1GHVW4wsQJqnjFjI-_qd6lVmdZO-GbxbpmuUca7WrfQ2AZNU6kMNUDz9i5Onr6tLG6A9Z_Z-3JnVsW7uiRfq1VHKzK_Y3uh7fwC4Uqz9Pf_u6cD0EzIQuSHYEukR2C3iuhkxTF47qsqYQUOsqKEw1lVR7Oaq1TNl3M4Fnkp1rC3LAuYSZhkb5q7v2rqXM7misGh-hBQpTDWomBpxqoHaPJFTsCofzfq3Vt1FwWL-C62pE-R5EQaByLV3EZim4VUYwuRhGARBZKadFzOGGdUuJjywKGEOJEU0kYaD05BI81ScQZg5Ec-lYGghLnId0jEAx8jEXGEA5vL4By0Nsc0rSWhmP6c0cXfy5dgz9UfBmM3dZwWaJT5UlyBHbYqVZG364ttm9jMoZ4lD4Pk5RNcoLKE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3JTttA9AkCqJwKtFVZCnOAo8HL2GMfUA9AREQSRSJiOUWzipEaG2yH7Z_6j31jEnpA4saB02g00khv3r7NA9iNVBqpSFF0coTyKOXcc-OsPBUxrpUJFWuKMS-6rN9Pr66ywRz8nfXCuLLKmUxsBLUqpIuRHyBdoipD7cR-3955bmqUy67ORmi8kMWZfnpAl6067BwjfvfCsH0yPDr1plMFPB6HzDOxoEZx4xJqAm19w3yZCuQ1bjhnOkuMcO2pSkolhQ6ZUEkgOA8yo41PkT_w2nlYoEjraQsWBp3e4Po1qBMmDE306CV72vwVdsDLR3u_j3oz3vej1A_eyPxGkbW_frInWEHQ-a0uV2FO52uw1NSryuobXLZt045DekVVk_Ob5pfQZm9zO56MyYUua_1IjiZ1RQpDBsWfJ5TyvLT1zdhKcm6fNbE56SM4HvrjuBDXDfMdhh8Byg9o5UWufwLJ4iwWJtGCy5DGAc9UEjOqM0VZ4iuTrMPWDCujKZ9Xo_8o2Xj_eAe-nA573VG30z_bhOUQTSMXIQ6CLWjV5UT_gkV5X9uq3J7SFIHRB6PwH9_JD7s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+Most+Shattering+Minimum+Vertex+Cuts+of+Polylogarithmic+Size+in+Near-Linear+Time&rft.jtitle=arXiv.org&rft.au=Hua%2C+Kevin&rft.au=Li%2C+Daniel&rft.au=Park%2C+Jaewoo&rft.au=Saranurak%2C+Thatchaphol&rft.date=2024-07-11&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2405.03801