py-irt: A Scalable Item Response Theory Library for Python
py-irt is a Python library for fitting Bayesian Item Response Theory (IRT) models. py-irt estimates latent traits of subjects and items, making it appropriate for use in IRT tasks as well as ideal-point models. py-irt is built on top of the Pyro and PyTorch frameworks and uses GPU-accelerated traini...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
13.03.2022
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | py-irt is a Python library for fitting Bayesian Item Response Theory (IRT) models. py-irt estimates latent traits of subjects and items, making it appropriate for use in IRT tasks as well as ideal-point models. py-irt is built on top of the Pyro and PyTorch frameworks and uses GPU-accelerated training to scale to large data sets. Code, documentation, and examples can be found at https://github.com/nd-ball/py-irt. py-irt can be installed from the GitHub page or the Python Package Index (PyPI). |
|---|---|
| AbstractList | py-irt is a Python library for fitting Bayesian Item Response Theory (IRT) models. py-irt estimates latent traits of subjects and items, making it appropriate for use in IRT tasks as well as ideal-point models. py-irt is built on top of the Pyro and PyTorch frameworks and uses GPU-accelerated training to scale to large data sets. Code, documentation, and examples can be found at https://github.com/nd-ball/py-irt. py-irt can be installed from the GitHub page or the Python Package Index (PyPI). |
| Author | Lalor, John P Rodriguez, Pedro |
| Author_xml | – sequence: 1 givenname: John surname: Lalor middlename: P fullname: Lalor, John P – sequence: 2 givenname: Pedro surname: Rodriguez fullname: Rodriguez, Pedro |
| BookMark | eNotjV1LwzAUQIMoOOd-gG8Bn1uTm6bt9jaGH4OCon0fN-kN66hNTTqx_96CPp2Xwzk37LL3PTF2J0WalVqLBww_7XcKIFQqJJRwwRaglEzKDOCarWI8CSEgL0BrtWCbYUraMG74ln9Y7NB0xPcjffJ3ioPvI_H6SD5MvGpNwJnOB_42jUff37Irh12k1T-XrH56rHcvSfX6vN9tqwQ1FImThhqD0gmd5WicEdo0iE3T2IzW1srS2sJQgaVAaRE0OamcxGZNeTn7asnu_7JD8F9niuPh5M-hn48HyJVWmSigUL83F0vj |
| ContentType | Paper |
| Copyright | 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2203.01282 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a527-f1bedba1f0546abfb05bdaadddc4e9cc18cc7be7a80a1ca25ef13f1ad9e68abf3 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:12:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a527-f1bedba1f0546abfb05bdaadddc4e9cc18cc7be7a80a1ca25ef13f1ad9e68abf3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2635340727?pq-origsite=%requestingapplication% |
| PQID | 2635340727 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2635340727 |
| PublicationCentury | 2000 |
| PublicationDate | 20220313 |
| PublicationDateYYYYMMDD | 2022-03-13 |
| PublicationDate_xml | – month: 03 year: 2022 text: 20220313 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2022 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7878706 |
| SecondaryResourceType | preprint |
| Snippet | py-irt is a Python library for fitting Bayesian Item Response Theory (IRT) models. py-irt estimates latent traits of subjects and items, making it appropriate... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Libraries Python |
| Title | py-irt: A Scalable Item Response Theory Library for Python |
| URI | https://www.proquest.com/docview/2635340727 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oaOLJd3wg6cFrhX10H1yMGogeJBvggCfSTtuEC-AuEvn3dpZFDyZePG7aw6azO_06_b5vAG6TtlQ6RMXR7R_ugGJSrlKNPEytsDEmQqiwbDYR9_vJeJxmVcGtqGiV25xYJmo9R6qRt8g0JSA3r_h-8c6paxTdrlYtNHahTk5lYQ3qj91-NviusvhR7DBzsLnOLM27WjL_nK7ufJ-sTV1y9n8l4XJn6R3-952OoJ7JhcmPYcfMTmC_ZHRicQqdxZpP82WHPbChiwMppBjV5dlgw4o1bCPLZ5VygTn0yrI1WQmcwajXHT0986pRApfCj7n1lNFKetbBr0gqq9pCaekSl8bQpIheghgrE0sXGA-lL4z1AutJnZoocfODc6jN5jNzAYwAoJYokjaSZracYQJPJ4QL3f90CY3tSkyqj72Y_CzD1d_D13Dgk3qA6HBBA2rL_MPcwB6ultMib1axaxL9cuiespfX7O0Lq3CoEQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VFgQTb_Eo4AFG08ZJGqcSQgioWvWhCDqUKfIrUpe2JKXQH8V_xM4DBiS2DsyxIvt8vvvsu_sO4JLWGZeO4Fho_6EvKMrH3JcCO37kRp6grsudtNmENxjQ0cgPSvBZ1MKYtMrCJqaGWk6FeSOvGdIU27B5ebezV2y6RpnoatFCI1OLrlq-6ytbctN50Pt7RUjrcXjfxnlXAcxc4uHI4kpyZkUaqzQYj3jd5ZLpUy6Fo3whLCqEx5XH9CoswYirIsuOLCZ91aB6vK1_uwYVR-s6LUMl6PSDl-9HHdLwNES3s-hpyhVWY_HHeHFNiGFS1b6A_LL5qSNrbf8zEezopbOZinehpCZ7sJHmq4pkH5qzJR7H8ya6Q89ay0z9FzJRB_SU5fwqlJEOoLwuA2lsjoKlIUo4gOEqZnsI5cl0oo4AGXgrmXBpXZiK4HSEsi1JDerV1uIYqoXgw_woJ-GP1E_-_nwBm-1hvxf2OoPuKWwRUydhEv_sKpTn8Zs6g3WxmI-T-DxXGwThinfpC-uGCPM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=py-irt%3A+A+Scalable+Item+Response+Theory+Library+for+Python&rft.jtitle=arXiv.org&rft.au=Lalor%2C+John+P&rft.au=Rodriguez%2C+Pedro&rft.date=2022-03-13&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2203.01282 |