py-irt: A Scalable Item Response Theory Library for Python

py-irt is a Python library for fitting Bayesian Item Response Theory (IRT) models. py-irt estimates latent traits of subjects and items, making it appropriate for use in IRT tasks as well as ideal-point models. py-irt is built on top of the Pyro and PyTorch frameworks and uses GPU-accelerated traini...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Lalor, John P, Rodriguez, Pedro
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 13.03.2022
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract py-irt is a Python library for fitting Bayesian Item Response Theory (IRT) models. py-irt estimates latent traits of subjects and items, making it appropriate for use in IRT tasks as well as ideal-point models. py-irt is built on top of the Pyro and PyTorch frameworks and uses GPU-accelerated training to scale to large data sets. Code, documentation, and examples can be found at https://github.com/nd-ball/py-irt. py-irt can be installed from the GitHub page or the Python Package Index (PyPI).
AbstractList py-irt is a Python library for fitting Bayesian Item Response Theory (IRT) models. py-irt estimates latent traits of subjects and items, making it appropriate for use in IRT tasks as well as ideal-point models. py-irt is built on top of the Pyro and PyTorch frameworks and uses GPU-accelerated training to scale to large data sets. Code, documentation, and examples can be found at https://github.com/nd-ball/py-irt. py-irt can be installed from the GitHub page or the Python Package Index (PyPI).
Author Lalor, John P
Rodriguez, Pedro
Author_xml – sequence: 1
  givenname: John
  surname: Lalor
  middlename: P
  fullname: Lalor, John P
– sequence: 2
  givenname: Pedro
  surname: Rodriguez
  fullname: Rodriguez, Pedro
BookMark eNotjV1LwzAUQIMoOOd-gG8Bn1uTm6bt9jaGH4OCon0fN-kN66hNTTqx_96CPp2Xwzk37LL3PTF2J0WalVqLBww_7XcKIFQqJJRwwRaglEzKDOCarWI8CSEgL0BrtWCbYUraMG74ln9Y7NB0xPcjffJ3ioPvI_H6SD5MvGpNwJnOB_42jUff37Irh12k1T-XrH56rHcvSfX6vN9tqwQ1FImThhqD0gmd5WicEdo0iE3T2IzW1srS2sJQgaVAaRE0OamcxGZNeTn7asnu_7JD8F9niuPh5M-hn48HyJVWmSigUL83F0vj
ContentType Paper
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2203.01282
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a527-f1bedba1f0546abfb05bdaadddc4e9cc18cc7be7a80a1ca25ef13f1ad9e68abf3
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:12:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-f1bedba1f0546abfb05bdaadddc4e9cc18cc7be7a80a1ca25ef13f1ad9e68abf3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2635340727?pq-origsite=%requestingapplication%
PQID 2635340727
PQPubID 2050157
ParticipantIDs proquest_journals_2635340727
PublicationCentury 2000
PublicationDate 20220313
PublicationDateYYYYMMDD 2022-03-13
PublicationDate_xml – month: 03
  year: 2022
  text: 20220313
  day: 13
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7878706
SecondaryResourceType preprint
Snippet py-irt is a Python library for fitting Bayesian Item Response Theory (IRT) models. py-irt estimates latent traits of subjects and items, making it appropriate...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Libraries
Python
Title py-irt: A Scalable Item Response Theory Library for Python
URI https://www.proquest.com/docview/2635340727
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTgIxFL1R0MSV7_hA0oXbyrSdR4eNUQPRRMkEiMEVaTttwgZwBon8ve1QdGHixmXTLpo-Tm9uzzkX4FppJU0sIkylCnAYiRTLWElMlSQJM4zpSrf2-pz0enw0SjOfcCs9rXKDiRVQ5zPlcuQtZ5rCnJtXcjt_x65qlPtd9SU0tqHunMrCGtTvO72s_51loXFiY2a2_s6szLtaovicLG8oddamFpzpLxCuXpbu_n_ndAD1TMx1cQhbenoEuxWjU5XH0J6v8KRYtNEdGth9cAop5PLyqL9mxWq0luUjr1xANnpF2cpZCZzAsNsZPjxiXygBi4gm2BCpcymIseFXLKSRQSRzYYErV6FOlSJcqUTqRPBAECVopA1hhog81TG349kp1KazqT4DFAplJI8EkbkJCQ8k17GjS-X2Zmsq-Tk0Nisx9oe9HP8sw8Xf3ZewR516wNHhWANqi-JDX8GOWi4mZdH0e9d09MuBbWVPL9nbFxwWqgQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ4gavTkOz5Qe9BjZdt9FRJjjEogPLJRYvC0abttwgVwQZQf5X-03QU9mHjj4Hmbze50Op12vu8bgAuppNAB9zEV0sGezytYBFJgKgUJXe26KuOtPbfCTof1epWoAJ8LLoyFVS5iYhaok6G0d-RlK5riWjWv8Gb0im3XKFtdXbTQyN2iqWbv5sg2vm7cm_m9pLT20L2r43lXAcx9GmJNhEoEJ9rkKgEXWji-SLhZ5Yn0VEVKwqQMhQo5cziRnPpKE1cTnlRUwMx417x2BVY94-usCKtRox29fF_q0CA0KbqbV08zrbAyTz_60ytKrZKq2Qvor5ifbWS1rX9mgm3z63yk0h0oqMEurGd4VTneg-pohvvppIpu0ZPxMsv_QrbqgB5zzK9CuegAmvMykMnNUTSzQgn70F3G1x5AcTAcqENAHpdaMJ8TkWiPMEcwFVgwWGLilqKCHUFpYfh4vpTH8Y_Vj_9-fA4b9W67FbcaneYJbFLLk7DAP7cExUn6pk5hTU4n_XF6NncbBPGSZ-kLTtsK5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=py-irt%3A+A+Scalable+Item+Response+Theory+Library+for+Python&rft.jtitle=arXiv.org&rft.au=Lalor%2C+John+P&rft.au=Rodriguez%2C+Pedro&rft.date=2022-03-13&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2203.01282