Identifying and characterizing extrapolation in multivariate response data

Extrapolation is defined as making predictions beyond the range of the data used to estimate a statistical model. In ecological studies, it is not always obvious when and where extrapolation occurs because of the multivariate nature of the data. Previous work on identifying extrapolation has focused...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Bartley, Meridith L, Hanks, Ephraim M, Schliep, Erin M, Soranno, Patricia A, Wagner, Tyler
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 12.11.2019
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Extrapolation is defined as making predictions beyond the range of the data used to estimate a statistical model. In ecological studies, it is not always obvious when and where extrapolation occurs because of the multivariate nature of the data. Previous work on identifying extrapolation has focused on univariate response data, but these methods are not directly applicable to multivariate response data, which are more and more common in ecological investigations. In this paper, we extend previous work that identified extrapolation by applying the predictive variance from the univariate setting to the multivariate case. We illustrate our approach through an analysis of jointly modeled lake nutrients and indicators of algal biomass and water clarity in over 7000 inland lakes from across the Northeast and Mid-west US. In addition, we illustrate novel exploratory approaches for identifying regions of covariate space where extrapolation is more likely to occur using classification and regression trees.
AbstractList Extrapolation is defined as making predictions beyond the range of the data used to estimate a statistical model. In ecological studies, it is not always obvious when and where extrapolation occurs because of the multivariate nature of the data. Previous work on identifying extrapolation has focused on univariate response data, but these methods are not directly applicable to multivariate response data, which are more and more common in ecological investigations. In this paper, we extend previous work that identified extrapolation by applying the predictive variance from the univariate setting to the multivariate case. We illustrate our approach through an analysis of jointly modeled lake nutrients and indicators of algal biomass and water clarity in over 7000 inland lakes from across the Northeast and Mid-west US. In addition, we illustrate novel exploratory approaches for identifying regions of covariate space where extrapolation is more likely to occur using classification and regression trees.
Author Bartley, Meridith L
Soranno, Patricia A
Wagner, Tyler
Hanks, Ephraim M
Schliep, Erin M
Author_xml – sequence: 1
  givenname: Meridith
  surname: Bartley
  middlename: L
  fullname: Bartley, Meridith L
– sequence: 2
  givenname: Ephraim
  surname: Hanks
  middlename: M
  fullname: Hanks, Ephraim M
– sequence: 3
  givenname: Erin
  surname: Schliep
  middlename: M
  fullname: Schliep, Erin M
– sequence: 4
  givenname: Patricia
  surname: Soranno
  middlename: A
  fullname: Soranno, Patricia A
– sequence: 5
  givenname: Tyler
  surname: Wagner
  fullname: Wagner, Tyler
BookMark eNotjUFLwzAYQIMoOOd-gLeC584vSZMmRxnqJgMvu48vzVfNqGlN0zH99Sp6evAO712x89hHYuyGw7IySsEdplM4LrkFvYQapD5jMyElL00lxCVbjOMBAISuhVJyxp43nmIO7WeIrwVGXzRvmLDJlMLXr6JTTjj0HebQxyLE4n3qcjhiCpipSDQOfRyp8Jjxml202I20-Oec7R4fdqt1uX152qzutyUqUZfEncHWU2taxx02ishK3VgwjQJrnYPWIvCq9kI74MI47kF74xRXVHmUc3b7lx1S_zHRmPeHfkrx57gXohLK6orX8hv1jVIl
ContentType Paper
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1906.07036
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a527-e1b8afdef8fb1bac5ee936c908c5099bb0f9a0147d26b0128b1d06d8b515e4da3
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:18:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-e1b8afdef8fb1bac5ee936c908c5099bb0f9a0147d26b0128b1d06d8b515e4da3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2242596417?pq-origsite=%requestingapplication%
PQID 2242596417
PQPubID 2050157
ParticipantIDs proquest_journals_2242596417
PublicationCentury 2000
PublicationDate 20191112
PublicationDateYYYYMMDD 2019-11-12
PublicationDate_xml – month: 11
  year: 2019
  text: 20191112
  day: 12
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7051569
SecondaryResourceType preprint
Snippet Extrapolation is defined as making predictions beyond the range of the data used to estimate a statistical model. In ecological studies, it is not always...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Ecological monitoring
Extrapolation
Identification methods
Lakes
List brokers
Multivariate analysis
Nutrients
Predictions
Regression analysis
Statistical analysis
Statistical models
Title Identifying and characterizing extrapolation in multivariate response data
URI https://www.proquest.com/docview/2242596417
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BCxIT3-KjVBlYQ2MndewJCVQECKoIOpSp8qfUJS1JqRC_nnOSlgGJhWxJlsix7t47v3sHcOmoNjGTIkT6o8LEb2NumQvTmFBHY4tX5TP7lA6HfDwWWVNwKxtZ5SomVoHazLSvkfeox8aCJSS9nr-HfmqUP11tRmhsQts7lSUtaN8MhtnLuspCWYqYOa6PMyvzrp4sPqfLK8yD3rUzitmvIFxllrvd_37THrQzObfFPmzY_AC2K0WnLg_hsW7BrdqYApmbQK-tmb_8IwzKhZzPailcMM2DSlq4ROqM6DMoaumsDbyC9AhGd4PR7X3YDE4IZZ-moSWKS2es404RJXXfWhEzLSKuER4IpSInJFKj1FCmfIJSxETMcIXYxiZGxsfQyme5PYEA-RMROqHOWp5o3ueIcrmjjhNJkHtFp9BZrcyk2fzl5GdZzv5-fQ47iD-Eb-0jtAOtRfFhL2BLLxfTsug2_7Lr5ZiveJc9PGdv32olrlE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VFgQTb_EokAHGQOykiT0gBqBq6UMdOpSpsh1b6pKWpJTHf-I_ck7aMiCxdSBjIkW273zfnf3dHcCloSr2Q8FdDH-kG1g1Zjo0buQTaqiv8cnrzLajbpcNBrxXgq9FLoylVS5sYm6o47GyZ-Q31PrGPAxIdDd5cW3XKHu7umihUahFS3-8YciW3TYfUL5XlNYf-_cNd95VwBU1GrmaSCZMrA0zkkihalpzP1TcYwqxk0vpGS4wbohiGkprvSWJvTBmEoFfB7Hw8bdrUAlwNKwMlV6z03teHurQMEIX3S9uT_NaYTcifR_NrhF2bZFQzw9_2fwcyOrb_2wJdnDqYqLTXSjpZA82cr6qyvbhqUgwzpO0HJHEjloWnv60rxByUjEZF0Q_Z5Q4OXFyJnC7TbWTFsRg7Vh-7AH0VzH6Qygn40QfgYPRIeEqoEZrFihWY-jDM0MNI4JgZOkdQ3UhiOF8a2fDHymc_P35AjYb_U572G52W6ewhZ4Wt0mMhFahPE1f9Rmsq9l0lKXnczVyYLhiqX0Dh8UJ0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+and+characterizing+extrapolation+in+multivariate+response+data&rft.jtitle=arXiv.org&rft.au=Bartley%2C+Meridith+L&rft.au=Hanks%2C+Ephraim+M&rft.au=Schliep%2C+Erin+M&rft.au=Soranno%2C+Patricia+A&rft.date=2019-11-12&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1906.07036