Secuer: ultrafast, scalable and accurate clustering of single-cell RNA-seq data

Identifying cell clusters is a critical step for single-cell transcriptomics study. Despite the numerous clustering tools developed recently, the rapid growth of scRNA-seq volumes prompts for a more (computationally) efficient clustering method. Here, we introduce Secuer, a Scalable and Efficient sp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Wei, Nana, Nie, Yating, Liu, Lin, Zheng, Xiaoqi, Hua-Jun Wu4
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 07.07.2022
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Identifying cell clusters is a critical step for single-cell transcriptomics study. Despite the numerous clustering tools developed recently, the rapid growth of scRNA-seq volumes prompts for a more (computationally) efficient clustering method. Here, we introduce Secuer, a Scalable and Efficient speCtral clUstERing algorithm for scRNA-seq data. By employing an anchor-based bipartite graph representation algorithm, Secuer enjoys reduced runtime and memory usage by orders of magnitude, especially for ultra-large datasets profiling over 1 or even 10 million cells. Meanwhile, Secuer also achieves better or comparable accuracy than competing methods in small and moderate benchmark datasets. Furthermore, we showcase that Secuer can also serve as a building block for a new consensus clustering method, Secuer-consensus, which again greatly improves the runtime and scalability of state-of-the-art consensus clustering methods while also maintaining the accuracy. Overall, Secuer is a versatile, accurate, and scalable clustering framework suitable for small to ultra-large single-cell clustering tasks.
AbstractList Identifying cell clusters is a critical step for single-cell transcriptomics study. Despite the numerous clustering tools developed recently, the rapid growth of scRNA-seq volumes prompts for a more (computationally) efficient clustering method. Here, we introduce Secuer, a Scalable and Efficient speCtral clUstERing algorithm for scRNA-seq data. By employing an anchor-based bipartite graph representation algorithm, Secuer enjoys reduced runtime and memory usage by orders of magnitude, especially for ultra-large datasets profiling over 1 or even 10 million cells. Meanwhile, Secuer also achieves better or comparable accuracy than competing methods in small and moderate benchmark datasets. Furthermore, we showcase that Secuer can also serve as a building block for a new consensus clustering method, Secuer-consensus, which again greatly improves the runtime and scalability of state-of-the-art consensus clustering methods while also maintaining the accuracy. Overall, Secuer is a versatile, accurate, and scalable clustering framework suitable for small to ultra-large single-cell clustering tasks.
Author Hua-Jun Wu4
Nie, Yating
Zheng, Xiaoqi
Wei, Nana
Liu, Lin
Author_xml – sequence: 1
  givenname: Nana
  surname: Wei
  fullname: Wei, Nana
– sequence: 2
  givenname: Yating
  surname: Nie
  fullname: Nie, Yating
– sequence: 3
  givenname: Lin
  surname: Liu
  fullname: Liu, Lin
– sequence: 4
  givenname: Xiaoqi
  surname: Zheng
  fullname: Zheng, Xiaoqi
– sequence: 5
  fullname: Hua-Jun Wu4
BookMark eNotjctKAzEUQIMoWGs_wF3ArVOTm-e4K8UXFAvafbmTuZGWMGOTGfHzHdDVgbM454qdd31HjN1IsdTeGHGP-efwvQQQZilBKzhjM1BKVl4DXLJFKUchBFgHxqgZ235QGCk_8DENGSOW4Y6XgAmbRBy7lmMIY8aBeEhjGSgfuk_eR14mJqoCpcTf31ZVoRNvccBrdhExFVr8c852T4-79Uu12T6_rlebCg24qo0CTGNsrTQ48hKda0EgNEYGlNb6WEfvtQ1CCdmq2BgfrCZrrNdtM9k5u_3LfuX-NFIZ9sd-zN103IO1tXMgpVO_-OpQog
ContentType Paper
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2205.12432
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Proquest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a527-df025b5693427e81a77d20a2b51ca1668f9f8846c0301d3fb58c64e65684dbc03
IEDL.DBID PIMPY
IngestDate Mon Jun 30 09:19:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-df025b5693427e81a77d20a2b51ca1668f9f8846c0301d3fb58c64e65684dbc03
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/publiccontent/docview/2669772117?pq-origsite=%requestingapplication%
PQID 2669772117
PQPubID 2050157
ParticipantIDs proquest_journals_2669772117
PublicationCentury 2000
PublicationDate 20220707
PublicationDateYYYYMMDD 2022-07-07
PublicationDate_xml – month: 07
  year: 2022
  text: 20220707
  day: 07
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7998374
SecondaryResourceType preprint
Snippet Identifying cell clusters is a critical step for single-cell transcriptomics study. Despite the numerous clustering tools developed recently, the rapid growth...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Clustering
Datasets
Kernel functions
Title Secuer: ultrafast, scalable and accurate clustering of single-cell RNA-seq data
URI https://www.proquest.com/docview/2669772117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA7aKnhyx6WWHDyatjOTZcaLqFgUdCy1SD2VJJNAoXSZpfjzzZtOFTx48ppcQkLe973vbQhdRjTwpQ444RGFMCM1xIGCItYwGQjqMK4U9N-fRRyHw2HUq8qjsyqtcm0TS0O96vYMedvOCLeTmQbFvO1gxREX57yIm_mCwAwpiLVWAzU2Ud25PT6roXrv6aX38a25-Fw4Bh2sgptlK6-2TD_HyxZUm7Yc0sEQkl8mucSZ7u7_nnDPnUzOTbqPNsz0AG2X2Z46O0SvoLKb9BoXkzyVVmb5Fc7cY0EZFZbTBEutC-ghgfWkgE4KDt_wzGLQFSaGgNiP-_EtycwCQ4rpERp0Hwb3j6SarEAk8wVJrGM6ivEooL4woSeFSPyO9BXztPQ4D21kQ0dMNPhLSWAVCzWnxlG_kCbKrR6j2nQ2NScIe0rZDrMeFzKiVnWi0EijKAdmxyLGTlFjfVmj6ndko5-7Oft7-xzt-FBuUMqpDVTL08JcoC29zMdZ2kT1u4e4129CvuZbs3rsL9gRt8w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB60KnryjW9z0JvRbjaPXUFEfKBYq2gRbyXJJlAore62VX-U_9HMahU8ePPgdQMLm5mdb-abF8BWymOmbSypTDmmGbmjARQM9U7oWPGAcSWhf19T9Xry8JDejMDbsBcGyyqHNrE01FnXIke-F4AkuCohXFGHj08Ut0ZhdnW4QuNDLS7d63MI2YqDi5Mg323Gzk4bx-f0c6sA1YIpmvmA8kbINOZMuSTSSmWsqpkRkdWRlIlPfRJA2WKskMXeiMRK7oLbk_DMhKfhtaMwxrE8sqwUvPuidJhUwUGPP3Kn5aSwPZ2_tAa72My6G4AUd5z8sPgljJ1N_7MLmIGxG_3o8lkYcZ05mCirVW0xD9eYJXD5Pum3e7n2uujtkCIoG7aBEd3JiLa2jzMwiG33cRJEwGfS9QR5kbajmKwgt_UjWrgngiWyC9D4i09YhEqn23FLQCJjfFX4SCqdcm-qaeK0M1yiZypSIZZhbSiN5uffXTS_RbHy-_EmTJ43rmrN2kX9chWmGLZOlNTwGlR6ed-tw7gd9FpFvlFqEoHmHwvuHbjhAfY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secuer%3A+ultrafast%2C+scalable+and+accurate+clustering+of+single-cell+RNA-seq+data&rft.jtitle=arXiv.org&rft.au=Wei%2C+Nana&rft.au=Nie%2C+Yating&rft.au=Liu%2C+Lin&rft.au=Zheng%2C+Xiaoqi&rft.date=2022-07-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2205.12432