Secuer: ultrafast, scalable and accurate clustering of single-cell RNA-seq data
Identifying cell clusters is a critical step for single-cell transcriptomics study. Despite the numerous clustering tools developed recently, the rapid growth of scRNA-seq volumes prompts for a more (computationally) efficient clustering method. Here, we introduce Secuer, a Scalable and Efficient sp...
Saved in:
| Published in: | arXiv.org |
|---|---|
| Main Authors: | , , , , |
| Format: | Paper |
| Language: | English |
| Published: |
Ithaca
Cornell University Library, arXiv.org
07.07.2022
|
| Subjects: | |
| ISSN: | 2331-8422 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Identifying cell clusters is a critical step for single-cell transcriptomics study. Despite the numerous clustering tools developed recently, the rapid growth of scRNA-seq volumes prompts for a more (computationally) efficient clustering method. Here, we introduce Secuer, a Scalable and Efficient speCtral clUstERing algorithm for scRNA-seq data. By employing an anchor-based bipartite graph representation algorithm, Secuer enjoys reduced runtime and memory usage by orders of magnitude, especially for ultra-large datasets profiling over 1 or even 10 million cells. Meanwhile, Secuer also achieves better or comparable accuracy than competing methods in small and moderate benchmark datasets. Furthermore, we showcase that Secuer can also serve as a building block for a new consensus clustering method, Secuer-consensus, which again greatly improves the runtime and scalability of state-of-the-art consensus clustering methods while also maintaining the accuracy. Overall, Secuer is a versatile, accurate, and scalable clustering framework suitable for small to ultra-large single-cell clustering tasks. |
|---|---|
| AbstractList | Identifying cell clusters is a critical step for single-cell transcriptomics study. Despite the numerous clustering tools developed recently, the rapid growth of scRNA-seq volumes prompts for a more (computationally) efficient clustering method. Here, we introduce Secuer, a Scalable and Efficient speCtral clUstERing algorithm for scRNA-seq data. By employing an anchor-based bipartite graph representation algorithm, Secuer enjoys reduced runtime and memory usage by orders of magnitude, especially for ultra-large datasets profiling over 1 or even 10 million cells. Meanwhile, Secuer also achieves better or comparable accuracy than competing methods in small and moderate benchmark datasets. Furthermore, we showcase that Secuer can also serve as a building block for a new consensus clustering method, Secuer-consensus, which again greatly improves the runtime and scalability of state-of-the-art consensus clustering methods while also maintaining the accuracy. Overall, Secuer is a versatile, accurate, and scalable clustering framework suitable for small to ultra-large single-cell clustering tasks. |
| Author | Hua-Jun Wu4 Nie, Yating Zheng, Xiaoqi Wei, Nana Liu, Lin |
| Author_xml | – sequence: 1 givenname: Nana surname: Wei fullname: Wei, Nana – sequence: 2 givenname: Yating surname: Nie fullname: Nie, Yating – sequence: 3 givenname: Lin surname: Liu fullname: Liu, Lin – sequence: 4 givenname: Xiaoqi surname: Zheng fullname: Zheng, Xiaoqi – sequence: 5 fullname: Hua-Jun Wu4 |
| BookMark | eNotjctKAzEUQIMoWGs_wF3ArVOTm-e4K8UXFAvafbmTuZGWMGOTGfHzHdDVgbM454qdd31HjN1IsdTeGHGP-efwvQQQZilBKzhjM1BKVl4DXLJFKUchBFgHxqgZ235QGCk_8DENGSOW4Y6XgAmbRBy7lmMIY8aBeEhjGSgfuk_eR14mJqoCpcTf31ZVoRNvccBrdhExFVr8c852T4-79Uu12T6_rlebCg24qo0CTGNsrTQ48hKda0EgNEYGlNb6WEfvtQ1CCdmq2BgfrCZrrNdtM9k5u_3LfuX-NFIZ9sd-zN103IO1tXMgpVO_-OpQog |
| ContentType | Paper |
| Copyright | 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2205.12432 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a527-df025b5693427e81a77d20a2b51ca1668f9f8846c0301d3fb58c64e65684dbc03 |
| IEDL.DBID | PIMPY |
| IngestDate | Mon Jun 30 09:19:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a527-df025b5693427e81a77d20a2b51ca1668f9f8846c0301d3fb58c64e65684dbc03 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2669772117?pq-origsite=%requestingapplication% |
| PQID | 2669772117 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2669772117 |
| PublicationCentury | 2000 |
| PublicationDate | 20220707 |
| PublicationDateYYYYMMDD | 2022-07-07 |
| PublicationDate_xml | – month: 07 year: 2022 text: 20220707 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2022 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7998374 |
| SecondaryResourceType | preprint |
| Snippet | Identifying cell clusters is a critical step for single-cell transcriptomics study. Despite the numerous clustering tools developed recently, the rapid growth... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Clustering Datasets Kernel functions |
| Title | Secuer: ultrafast, scalable and accurate clustering of single-cell RNA-seq data |
| URI | https://www.proquest.com/docview/2669772117 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB20VXDlGx-1zMKl0yZpMg83omJR0Bhqkboq84RCSds8ip_vTJoquHDlNrMZZsi955459x4ALpnPtaBK2iJHCxRqiRHF2kOKRSwU2BeismR5fyZxTEcjltTt0Xktq1zHxCpQr6Y9O922DcJdNZOOMe_atGKBiy1eyM18gZyHlHtrrQ01NkHTlj1B1ADN5Okl-fjmXAJMLILurR43q1FeXZ59TpYd123asZnOmZD8CslVnunv_u8O9-zO-Fxn-2BDpwdgu1J7yvwQvDqWXWfXsJwWGTc8L65gbi_LtVFBnirIpSzdDAkop6WbpGDzG5wZ6HiFqUaO7IeD-BblegGdxPQIDPsPw_tHVDsrIB4FBCljkY6IMOuFAdHU54SowOOBiHzJfYypYYZaYCJdvaR6RkRU4lBb6EdDJezXY9BIZ6k-AdDTOmKMMMNtYVIZH4U-MRHHTGpPEHEKWuvDGtd_Rz7-OZuzv5fPwU7g2g0qOrUFGkVW6guwJZfFJM_aoHn3ECeDttNrvrXry_4C7oC49g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB5qq-jJNz6q5qA303a3u8lGEBEfKK1VtEhvJcnOQqH0sdtW_VH-R5PYKnjw5sHrBhY2MzvfvD-AQ-FJVFGsTZCDigaoGY0YVmgsQhEo5inlKFme67zRiFot8ZCD99ksjG2rnNlEZ6jjvrY58rIBEuOqmHCFnw2G1LJG2erqjELjUy1q-PZiQrbs9PbSyPfI96-vmhc3dMoqQGXocxonBuVVyEQ18DlGnuQ89ivSV6GnpcdYlIgkMqCsbawQVxMVRpoFaNyeKIiVeWpeOweFwLZHuk7Bp6-Ujs-4cdCrn7VTtymsLNPXzqRkh1lLBkgtx8kPi-9g7Hr5n13AChQe5ADTVchhbw0WXLeqztbh3lYJMD0h4-4olYnMRsckM8pmx8CI7MVEaj22OzCI7o7tJgiDz6SfEJsX6SK1xQry2DinGQ6JbZHdgOZffMIm5Hv9Hm4BqSCGQnCRSBNYOeKmwONJKJnQWFFcbUNxJo329O_O2t-i2Pn9-AAWb5p39Xb9tlHbhSXfjk641HAR8qN0jHswryejTpbuO00i0P5jwX0AOZoDIA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secuer%3A+ultrafast%2C+scalable+and+accurate+clustering+of+single-cell+RNA-seq+data&rft.jtitle=arXiv.org&rft.au=Wei%2C+Nana&rft.au=Nie%2C+Yating&rft.au=Liu%2C+Lin&rft.au=Zheng%2C+Xiaoqi&rft.date=2022-07-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2205.12432 |