An Improved Algorithm for Fast K-Word Proximity Search Based on Multi-Component Key Indexes

A search query consists of several words. In a proximity full-text search, we want to find documents that contain these words near each other. This task requires much time when the query consists of high-frequently occurring words. If we cannot avoid this task by excluding high-frequently occurring...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavný autor: Veretennikov, Alexander B
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 06.09.2020
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A search query consists of several words. In a proximity full-text search, we want to find documents that contain these words near each other. This task requires much time when the query consists of high-frequently occurring words. If we cannot avoid this task by excluding high-frequently occurring words from consideration by declaring them as stop words, then we can optimize our solution by introducing additional indexes for faster execution. In a previous work, we discussed how to decrease the search time with multi-component key indexes. We had shown that additional indexes can be used to improve the average query execution time up to 130 times if queries consisted of high-frequently occurring words. In this paper, we present another search algorithm that overcomes some limitations of our previous algorithm and provides even more performance gain. This is a pre-print of a contribution published in Arai K., Kapoor S., Bhatia R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1251, published by Springer, Cham. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-55187-2_37
AbstractList A search query consists of several words. In a proximity full-text search, we want to find documents that contain these words near each other. This task requires much time when the query consists of high-frequently occurring words. If we cannot avoid this task by excluding high-frequently occurring words from consideration by declaring them as stop words, then we can optimize our solution by introducing additional indexes for faster execution. In a previous work, we discussed how to decrease the search time with multi-component key indexes. We had shown that additional indexes can be used to improve the average query execution time up to 130 times if queries consisted of high-frequently occurring words. In this paper, we present another search algorithm that overcomes some limitations of our previous algorithm and provides even more performance gain. This is a pre-print of a contribution published in Arai K., Kapoor S., Bhatia R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1251, published by Springer, Cham. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-55187-2_37
Author Veretennikov, Alexander B
Author_xml – sequence: 1
  givenname: Alexander
  surname: Veretennikov
  middlename: B
  fullname: Veretennikov, Alexander B
BookMark eNotT01LwzAADaLgnPsB3gKeO9N8Nsda3CxOFBx48DDSJnUdbTKTdnT_3oCeHrzH-7oBl9ZZA8BdipY0Yww9KD-1pyVGSC4R5hm9ADNMSJpkFONrsAjhgFAUBGaMzMBXbmHZH707GQ3z7tv5dtj3sHEerlQY4Evy6byG795Nbd8OZ_hhlK_38FGFaHAWvo7d0CaF649xh40Gc4al1WYy4RZcNaoLZvGPc7BdPW2L52Tzti6LfJMohkWia00q0siImJG0IVRTSlNRc0WMkKnQgsuKc2KMrCiXmqQMcy4N5SKSFZmD-7_Y-OJnNGHYHdzobWzcYUqRYJJTQX4BYQRVCg
ContentType Paper
Copyright 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2009.02684
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a527-dcd3b3f9dcd2531f34d44417c6a3e7917d769b663ee9b469d3152669e46763eb3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:40:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-dcd3b3f9dcd2531f34d44417c6a3e7917d769b663ee9b469d3152669e46763eb3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2440759647?pq-origsite=%requestingapplication%
PQID 2440759647
PQPubID 2050157
ParticipantIDs proquest_journals_2440759647
PublicationCentury 2000
PublicationDate 20200906
PublicationDateYYYYMMDD 2020-09-06
PublicationDate_xml – month: 09
  year: 2020
  text: 20200906
  day: 06
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2020
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7334683
SecondaryResourceType preprint
Snippet A search query consists of several words. In a proximity full-text search, we want to find documents that contain these words near each other. This task...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Intelligent systems
Performance indices
Queries
Search algorithms
Title An Improved Algorithm for Fast K-Word Proximity Search Based on Multi-Component Key Indexes
URI https://www.proquest.com/docview/2440759647
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oaOLJd3wg2YPXDdItLT0ZMBAJ2jRKIsYD2e1ukURbbCuBf-_stujBxIunpm36yLQ73zdvgEskba7FJP68ktvU5lcuFRYarkqPUI1CjpzeFArfub7fHo-9oHS4ZWVa5VonGkUtk1D7yBsIQ4huum7yev5B9dQoHV0tR2hsQlV3SbBM6t7jt4_FclxkzKwIZprWXQ2eLmeLsk2lbnTySwUbXOnv_veN9qAa8LlK92FDxQewbfI5w-wQXjoxKfwFSpLO2xSvy1_fCTJU0udZTob0Ca1OEqTJUlc4rUiRdky6CGqSJDExhblUa4skRlwiQ7UiA91ZUWVHMOr3Rje3tJyjQDkKnMpQMsEiD7cWrriI2dLWg8dChzPlorkmXccTyDyU8gRay5KhJB3HU6hD8aBgx1CJ8VknQCKFhKHFZJsjqrVUk3t4QxkJKTjnTWGfQm0tqkm5FrLJj5zO_j59DjuWtmZ1uMapQSVPP9UFbIWLfJaldah2e37wUDefGPeCwX3w_AUiyrEk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gaPTkOz5Q96DHDdItLT0Ygw8CAQmJJJJ4aHa7WyXRFtuK8KP8j862VA8m3jh4atIm-5rpfDOz8wA4RaXNNphE5pXcpCY_t6kw0HBVuoWq73HU6dNE4a7d69WHQ6dfgM88F0aHVeYyMRXUMvS0j7yCMITopvMmL8dvVHeN0rereQuNjC06avaBJlt80b5B-p4ZRvN2cN2i864ClOP0VHqSCeY7-DSQ_3xmSlO34fIszpSNxou0LUcgDivlCLQdJcNVW5ajUKLgS8Fw2CUomVr4p5GC998uHcOyUUFn2d1pWimswqPpaDKviqnrqvyS-CmMNdf_2QFsQKnPxyrahIIKtmAljVb14m14bAQk84YoSRovT7jM5PmVoP5NmjxOSIc-4PpIPwqnOn9rRrKganKFkC1JGJA07ZhqWRgGiLoEd0Taum6kindgsIjt7EIxwLn2gPgK1aEak3WOmF1TVe7ggNIXUnDOq8Lch3JOGXf-p8fuD1kO_v58AqutwV3X7bZ7nUNYM7Tdri-mrDIUk-hdHcGyN0lGcXScchUBd8FE_AJtXAhf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Algorithm+for+Fast+K-Word+Proximity+Search+Based+on+Multi-Component+Key+Indexes&rft.jtitle=arXiv.org&rft.au=Veretennikov%2C+Alexander+B&rft.date=2020-09-06&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2009.02684