Physics-informed neural networks via stochastic Hamiltonian dynamics learning

In this paper, we propose novel learning frameworks to tackle optimal control problems by applying the Pontryagin maximum principle and then solving for a Hamiltonian dynamical system. Applying the Pontryagin maximum principle to the original optimal control problem shifts the learning focus to redu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Bajaj, Chandrajit, Nguyen, Minh
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 26.04.2024
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we propose novel learning frameworks to tackle optimal control problems by applying the Pontryagin maximum principle and then solving for a Hamiltonian dynamical system. Applying the Pontryagin maximum principle to the original optimal control problem shifts the learning focus to reduced Hamiltonian dynamics and corresponding adjoint variables. Then, the reduced Hamiltonian networks can be learned by going backwards in time and then minimizing loss function deduced from the Pontryagin maximum principle's conditions. The learning process is further improved by progressively learning a posterior distribution of the reduced Hamiltonians. This is achieved through utilizing a variational autoencoder which leads to more effective path exploration process. We apply our learning frameworks called NeuralPMP to various control tasks and obtain competitive results.
AbstractList In this paper, we propose novel learning frameworks to tackle optimal control problems by applying the Pontryagin maximum principle and then solving for a Hamiltonian dynamical system. Applying the Pontryagin maximum principle to the original optimal control problem shifts the learning focus to reduced Hamiltonian dynamics and corresponding adjoint variables. Then, the reduced Hamiltonian networks can be learned by going backwards in time and then minimizing loss function deduced from the Pontryagin maximum principle's conditions. The learning process is further improved by progressively learning a posterior distribution of the reduced Hamiltonians. This is achieved through utilizing a variational autoencoder which leads to more effective path exploration process. We apply our learning frameworks called NeuralPMP to various control tasks and obtain competitive results.
Author Bajaj, Chandrajit
Nguyen, Minh
Author_xml – sequence: 1
  givenname: Chandrajit
  surname: Bajaj
  fullname: Bajaj, Chandrajit
– sequence: 2
  givenname: Minh
  surname: Nguyen
  fullname: Nguyen, Minh
BookMark eNotjb1OwzAURi0EEqX0AdgsMaf4Jze2R1QBRSqCoXt1azvUJbXBTgp9eyLBdPSd4TtX5Dym6Am54WxeawB2h_knHOeCcz5nmjN9RiZCSl7pWohLMitlzxgTjRIAckJe3nanEmypQmxTPnhHox8ydiP675Q_Cj0GpKVPdoelD5Yu8RC6PsWAkbpTHJcttPOYY4jv1-Sixa742T-nZP34sF4sq9Xr0_PiflUhCFWh0630HoVptHTgANHXBpUyW4uMi8a23oERqrWNa0Bx2HJTGyZH7bzjckpu_24_c_oafOk3-zTkOBY3AoyWjAEo-Qvr9lM7
ContentType Paper
Copyright 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2111.08108
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a527-ad8f3eea29683d5d5aae49a779bca0126cfed5927fc6d65715b194903fedded13
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:31:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-ad8f3eea29683d5d5aae49a779bca0126cfed5927fc6d65715b194903fedded13
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2598300557?pq-origsite=%requestingapplication%
PQID 2598300557
PQPubID 2050157
ParticipantIDs proquest_journals_2598300557
PublicationCentury 2000
PublicationDate 20240426
PublicationDateYYYYMMDD 2024-04-26
PublicationDate_xml – month: 04
  year: 2024
  text: 20240426
  day: 26
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8680595
SecondaryResourceType preprint
Snippet In this paper, we propose novel learning frameworks to tackle optimal control problems by applying the Pontryagin maximum principle and then solving for a...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Learning
Maximum principle
Optimal control
Robustness
Stochastic models
Title Physics-informed neural networks via stochastic Hamiltonian dynamics learning
URI https://www.proquest.com/docview/2598300557
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6KXjyGz_m6MFrXJu0-TgJysYEN4oOmaeRJq9akG22c_jnm3SZHgQvntKkPZTk8d4v7z1-P4QuhYyFjgjgJGOhvaBEEkugFAuhhQCjOK15tp_u-XAoxmOZ-oRb5dsq1z6xdtRmpl2OvGNhuqA1Y9T1_B071ShXXfUSGpuo6ZjKrJ03b7rD9OE7y0IYt5iZrsqZNXlXR5WfxfLKfu64O6NQ_HLCdWTp7f73n_ZQM1VzKPfRBkwP0Hbd0amrQzTwT3hFjQomcNSV6s0OdeN3FSwLFVjop1-V42oO-i7VYZGgtZfArHTqq8CLSrwcoVGvO7rtY6-dgFVCOFZG5BRAEckENYlJlIJYKs5lppWNSUznYBJJeK6ZYQmPkiySsQypXTZgInqMGtPZFE5QAApEbC91meBZnFOSRVyF3Ab-mGWxlvQUtdabM_H2X01-dubs79fnaIdYmODqM4S1UGNRfsAF2tLLRVGVbX-cbdeR-Whn6d0gff4C9Muu1Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTsJAFL1B0OjKd3ygdqHLKp1pOzMLY6JCIDxCDDHsyHRmqiQGkCLKR_mP3ilFFybuWLjqtE2atHfmzLmPngtwzoXPlUeMG0RhCR0UT7jCUOpyrjg3WjKa6mw_Nlirxbtd0c7B5-JfGFtWucDEFKj1UNkY-RXSdE5Txaib0atru0bZ7OqihcZ8WtTN7B1dtuS6do_2vSCkUu7cVd2sq4ArA8JcqXlMjZFEhJzqQAdSGl9IxkSkJKJ1qGKjA0FYrEIdBswLIvTzRYniZW20R_GxK1DwKaJ6Hgq35Vb74TuoQ0KGFJ3Os6epVtiVHH_0p5foZlmpUK_Ef2F-upFVNv_ZJ9iCQluOzHgbcmawA2tpvapKdqGZjdy58KvRjhXmlC94SMvaE2falw4SW_UsrRK1U7WBHOS5uBocPRvgmUqcrGXG0x50lvEC-5AfDAfmABwjDffRZY04i_yYkshjssSQ1vhh5CtBD6G4sEUvW91J78cQR3_fPoP1aqfZ6DVqrfoxbBAkRDYTRcIi5CfjN3MCq2o66Sfj02wmOdBbsuG-AGcuCn0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+neural+networks+via+stochastic+Hamiltonian+dynamics+learning&rft.jtitle=arXiv.org&rft.au=Bajaj%2C+Chandrajit&rft.au=Nguyen%2C+Minh&rft.date=2024-04-26&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2111.08108