Tutorial and Practice in Linear Programming: Optimization Problems in Supply Chain and Transport Logistics
This tutorial is an andragogical guide for students and practitioners seeking to understand the fundamentals and practice of linear programming. The exercises demonstrate how to solve classical optimization problems with an emphasis on spatial analysis in supply chain management and transport logist...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavný autor: | |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
04.05.2023
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This tutorial is an andragogical guide for students and practitioners seeking to understand the fundamentals and practice of linear programming. The exercises demonstrate how to solve classical optimization problems with an emphasis on spatial analysis in supply chain management and transport logistics. All exercises display the Python programs and optimization libraries used to solve them. The first chapter introduces key concepts in linear programming and contributes a new cognitive framework to help students and practitioners set up each optimization problem. The cognitive framework organizes the decision variables, constraints, the objective function, and variable bounds in a format for direct application to optimization software. The second chapter introduces two types of mobility optimization problems (shortest path in a network and minimum cost tour) in the context of delivery and service planning logistics. The third chapter introduces four types of spatial optimization problems (neighborhood coverage, flow capturing, zone heterogeneity, service coverage) and contributes a workflow to visualize the optimized solutions in maps. The workflow creates decision variables from maps by using the free geographic information systems (GIS) programs QGIS and GeoDA. The fourth chapter introduces three types of spatial logistical problems (spatial distribution, flow maximization, warehouse location optimization) and demonstrates how to scale the cognitive framework in software to reach solutions. The final chapter summarizes lessons learned and provides insights about how students and practitioners can modify the Phyton programs and GIS workflows to solve their own optimization problem and visualize the results. |
|---|---|
| AbstractList | This tutorial is an andragogical guide for students and practitioners seeking to understand the fundamentals and practice of linear programming. The exercises demonstrate how to solve classical optimization problems with an emphasis on spatial analysis in supply chain management and transport logistics. All exercises display the Python programs and optimization libraries used to solve them. The first chapter introduces key concepts in linear programming and contributes a new cognitive framework to help students and practitioners set up each optimization problem. The cognitive framework organizes the decision variables, constraints, the objective function, and variable bounds in a format for direct application to optimization software. The second chapter introduces two types of mobility optimization problems (shortest path in a network and minimum cost tour) in the context of delivery and service planning logistics. The third chapter introduces four types of spatial optimization problems (neighborhood coverage, flow capturing, zone heterogeneity, service coverage) and contributes a workflow to visualize the optimized solutions in maps. The workflow creates decision variables from maps by using the free geographic information systems (GIS) programs QGIS and GeoDA. The fourth chapter introduces three types of spatial logistical problems (spatial distribution, flow maximization, warehouse location optimization) and demonstrates how to scale the cognitive framework in software to reach solutions. The final chapter summarizes lessons learned and provides insights about how students and practitioners can modify the Phyton programs and GIS workflows to solve their own optimization problem and visualize the results. |
| Author | Bridgelall, Raj |
| Author_xml | – sequence: 1 givenname: Raj surname: Bridgelall fullname: Bridgelall, Raj |
| BookMark | eNotjV1LwzAYhYMoOHU_wLuA151N3qRpvJPhFxQm2PvxNktnRpvUpBX119uhV4fzwXMuyKkP3hJyzfKVKKXMbzF-uc8V54ytcgVCnpAFB2BZKTg_J8uUDnme80JxKWFBDvU0huiwo-h39DWiGZ2x1HlaOW8xzlHYR-x75_d3dDOMrnc_OLrgj03T2T4dx2_TMHTfdP2OszmS6og-DSGOtAp7l2ZouiJnLXbJLv_1ktSPD_X6Oas2Ty_r-ypDyVVW2Fa3kjElbKmbFpVFzUttTMGM5moHDIwQUHAjGmGV3DENgrVMlwqatkC4JDd_2CGGj8mmcXsIU_Tz45YrKEQpNCj4BTXTW8o |
| ContentType | Paper |
| Copyright | 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2211.07345 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a527-6ef9f51174e89bfa7ea9289cc61c927d313c44362c4b4e75d19341f19873bf6a3 |
| IEDL.DBID | PIMPY |
| IngestDate | Mon Jun 30 09:13:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a527-6ef9f51174e89bfa7ea9289cc61c927d313c44362c4b4e75d19341f19873bf6a3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2736484937?pq-origsite=%requestingapplication% |
| PQID | 2736484937 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2736484937 |
| PublicationCentury | 2000 |
| PublicationDate | 20230504 |
| PublicationDateYYYYMMDD | 2023-05-04 |
| PublicationDate_xml | – month: 05 year: 2023 text: 20230504 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2023 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8306692 |
| SecondaryResourceType | preprint |
| Snippet | This tutorial is an andragogical guide for students and practitioners seeking to understand the fundamentals and practice of linear programming. The exercises... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Geographic information systems Heterogeneity Linear programming Logistics Mathematical analysis Minimum cost Optimization Software Spatial analysis Spatial distribution Students Supply chains Workflow |
| Title | Tutorial and Practice in Linear Programming: Optimization Problems in Supply Chain and Transport Logistics |
| URI | https://www.proquest.com/docview/2736484937 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagBYmJt3iUygOraRO_EhYkqiKQoETQoUyV48SiSE1LUir495xdtwxITIyJncSyLvfy3fchdC4znoLYUkI5NYRJHpCIpoJwkWrNJVM8No5sQvZ60WAQJ749uvJllUud6BT1Au3Z1m2DEm5lE20z5i0wuoJFDGzr1fSdWA4pe9bqCTXWUd0Cb7VrqJ7cPSQvq5xLKCR40HRxuOmgvFqq_BzNL8LQInlKyvgvlezszM32_65wB1ampnm5i9byYg9tumpPXe2jt75FLgDJw6rIcOIbpfCowBCagujDLVe1NQa7dokfQauMfbumHbEENJWd7BhBv3DnVcGFfdMKKR3fu8Yi-NgB6t90-51b4kkXiOKhJCI3sQEnTLI8ilOjZK5iiMm0FoGOQ5nRgGrGwOpplrJc8gwcQBYYm7qgqRGKHqJaMSnyI4TTmMvAQIgkjH2ERpxRA96ptCh4bcWOUWO5j0P_41TDn207-Xv4FG1Z5ndXe8gaqDYrP_IztKHns1FVNlH9uttLnpq2lPO56eXgGz3pwnA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED5BC4KJt3gU8ABjKIntOEFCDDzUqqV06ABT5Ti2KFIDNKXQH8V_5GzSMiCxdWBMnDh27nwP--4-gCOR8gTZlnqUU-MxwX0vokno8TBRigsmeWwc2IRotaL7-7g9B5-TXBgbVjmRiU5Qp8_K7pFXUc2GLGKoTS9eXj2LGmVPVycQGt9s0dDjd3TZ8vP6FdL3OAhurjuXNa9AFfAkD4QXahMbtDIE01GcGCm0jNHpUCr0VRyIlPpUMYZiXbGEacFTtHCYb6xvThMTSordzkOZIa-flqDcrt-2H6abOkEo0ESn36enrlZYVQ4-eqOTILClQgVl_JfMd4rsZuWf_YJVnLp80YM1mNPZOiy6eFWVb8BTx9ZewLVDZJaSdpHqRXoZQecah4i3XNxZHzXzGblDudgvEk5ti4XQye3DDtN0TC4fJV7Ynqa13knTpUbhxzahM4vZbUEpe870NpAk5sI36OSFxr5CI86oQfta2Dp-p5LtQGVCqG6x9PPuD5V2_24-hKVa57bZbdZbjT1Ytjj2LpKSVaA0HLzpfVhQo2EvHxwUbEagO2OqfgEMKw7w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tutorial+and+Practice+in+Linear+Programming%3A+Optimization+Problems+in+Supply+Chain+and+Transport+Logistics&rft.jtitle=arXiv.org&rft.au=Bridgelall%2C+Raj&rft.date=2023-05-04&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2211.07345 |