A Scalable Algorithm For Sparse Portfolio Selection

The sparse portfolio selection problem is one of the most famous and frequently-studied problems in the optimization and financial economics literatures. In a universe of risky assets, the goal is to construct a portfolio with maximal expected return and minimum variance, subject to an upper bound o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Bertsimas, Dimitris, Cory-Wright, Ryan
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 28.03.2021
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The sparse portfolio selection problem is one of the most famous and frequently-studied problems in the optimization and financial economics literatures. In a universe of risky assets, the goal is to construct a portfolio with maximal expected return and minimum variance, subject to an upper bound on the number of positions, linear inequalities and minimum investment constraints. Existing certifiably optimal approaches to this problem do not converge within a practical amount of time at real world problem sizes with more than 400 securities. In this paper, we propose a more scalable approach. By imposing a ridge regularization term, we reformulate the problem as a convex binary optimization problem, which is solvable via an efficient outer-approximation procedure. We propose various techniques for improving the performance of the procedure, including a heuristic which supplies high-quality warm-starts, a preprocessing technique for decreasing the gap at the root node, and an analytic technique for strengthening our cuts. We also study the problem's Boolean relaxation, establish that it is second-order-cone representable, and supply a sufficient condition for its tightness. In numerical experiments, we establish that the outer-approximation procedure gives rise to dramatic speedups for sparse portfolio selection problems.
AbstractList The sparse portfolio selection problem is one of the most famous and frequently-studied problems in the optimization and financial economics literatures. In a universe of risky assets, the goal is to construct a portfolio with maximal expected return and minimum variance, subject to an upper bound on the number of positions, linear inequalities and minimum investment constraints. Existing certifiably optimal approaches to this problem do not converge within a practical amount of time at real world problem sizes with more than 400 securities. In this paper, we propose a more scalable approach. By imposing a ridge regularization term, we reformulate the problem as a convex binary optimization problem, which is solvable via an efficient outer-approximation procedure. We propose various techniques for improving the performance of the procedure, including a heuristic which supplies high-quality warm-starts, a preprocessing technique for decreasing the gap at the root node, and an analytic technique for strengthening our cuts. We also study the problem's Boolean relaxation, establish that it is second-order-cone representable, and supply a sufficient condition for its tightness. In numerical experiments, we establish that the outer-approximation procedure gives rise to dramatic speedups for sparse portfolio selection problems.
Author Bertsimas, Dimitris
Cory-Wright, Ryan
Author_xml – sequence: 1
  givenname: Dimitris
  surname: Bertsimas
  fullname: Bertsimas, Dimitris
– sequence: 2
  givenname: Ryan
  surname: Cory-Wright
  fullname: Cory-Wright, Ryan
BookMark eNotzUFLwzAYgOEgCs65H-At4Ln1-74kTXIswzlhoNDdR5qm2hGbmXbiz1fQ03t73ht2OaYxMHaHUEqjFDy4_D18lWgQSwAU5oItSAgsjCS6ZqtpOgIAVZqUEgsmat54F10bA6_jW8rD_P7BNynz5uTyFPhrynOf4pB4E2Lw85DGW3bVuziF1X-XbL953K-3xe7l6Xld7wqnSBcVBq-ltt4r62WnsHNC-c5VTrXS6s5KQAxaoegNeKe6iiSJIGRLZHvZiyW7_2NPOX2ewzQfjumcx9_jgZCMALCgxQ9QHUbD
ContentType Paper
Copyright 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1811.00138
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a527-61ec7479cc59c4d51da35cda6a5b497d94011e7513f80ca5d62423e34b229f4f3
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:41:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-61ec7479cc59c4d51da35cda6a5b497d94011e7513f80ca5d62423e34b229f4f3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2128300907?pq-origsite=%requestingapplication%
PQID 2128300907
PQPubID 2050157
ParticipantIDs proquest_journals_2128300907
PublicationCentury 2000
PublicationDate 20210328
PublicationDateYYYYMMDD 2021-03-28
PublicationDate_xml – month: 03
  year: 2021
  text: 20210328
  day: 28
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7534975
SecondaryResourceType preprint
Snippet The sparse portfolio selection problem is one of the most famous and frequently-studied problems in the optimization and financial economics literatures. In a...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Approximation
Cutting
Economic conditions
Economic models
Heuristic methods
Linear functions
Lower bounds
Optimization
Performance enhancement
Portfolio management
Representations
Upper bounds
Title A Scalable Algorithm For Sparse Portfolio Selection
URI https://www.proquest.com/docview/2128300907
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5oq-DJHZdacvA6bTNLkjlJlRYFLcEUqacyW7RQm5rU4s93Jk31IHjxOAwzzMabt3zvewCXItWOdYQiqywLRH3DkQi4j1SKcegov1Z0TU_34WAQjUY8rhxuRQWrXMvEUlDrTDkfeduK2IhYhaATXs3fkasa5aKrVQmNTag7pjJag_p1bxA_fntZcBBanZmswpkleVdb5J-TZct-bH6rDNP9EsLlz9Lf_e-a9qAei7nJ92HDzA5gu0R0quIQSNdL7Pm7zCivO32xwxavb14_y71kbo1Z4zkMaZpNJ5mXlLVw7AUdwbDfG97coqpCAhIMu_Q-o6w5wJViXFHNfC0IU1oEgknKQ82t8eSbkPkkjTpKMO2SQYghVGLMU5qSY6jNspk5AY8yq6tIFwaVlAotIxH4gnEpQzsdD8QpNNZHMK5eeTH-2f_Z393nsIMdFqRDEI4aUFvkH-YCttRyMSnyZnVpTYe7TGwrvnuIn78AWyKibw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ4gaPTkOz5Q96DHRbaP3e3BGKISCI-QQAyeSLfbVRJkcUHUH-V_dLqAHky8cfDcpGmnX6ffdF4A5zIKTdURZiNZljZztLClKxxbRYR4puTXrFzTfd1rNv1uV7Qy8LnIhTFhlQudmCrqMFbmj_wSVaxPkRAUvevRi226Rhnv6qKFxgwWNf3xhibb-Kp6i-d7QUj5rnNTseddBWzJiUmJ0woptFCKC8VC7oSSchVKV_KACS8UaHA42uMOjfyikjw0CRRUUxYQIiIWUZx2BXIMse5nIdeqNloP3586xPWQotOZ9zStFXYpk_f-tIDvqFNIvYK_dH76kJU3_5kItnDrcqSTbcjo4Q6spfGqarwLtGS1EV0m78sqDR5xlZOnZ6scJ1Z7hKa6tkyEbBQP-rHVTjv9IPz2oLOMZe5DdhgP9QFYjCMTC4yTN2BMhoEvXUdyEQQeTidceQj5hcR78zs87v2I--jv4TNYr3Qa9V692qwdwwYxUS9FahM_D9lJ8qpPYFVNJ_1xcjrHiwW9JR_PFx20-qU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Scalable+Algorithm+For+Sparse+Portfolio+Selection&rft.jtitle=arXiv.org&rft.au=Bertsimas%2C+Dimitris&rft.au=Cory-Wright%2C+Ryan&rft.date=2021-03-28&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1811.00138